Recently, 2D layered transition metal dichalcogenides (TMDCs) with their ultrathin sheet nanostructure and diversified electronic structure have drawn attention for various advanced applications to achieve high-performance parameters. Unique 2D TMDCs mainly comprise transition metal and chalcogen element where chalcogen element layers sandwich the transition metal element layer. In such a case, various properties can be enhanced and controlled depending on the targeted application. Among manipulative 2D TMDCs, tungsten disulphide (WS) is one of the emerging nano-system due to its fascinating properties in terms of direct band gap, higher mobility, strong photoluminescence, good thermal stability, and strong magnetic field interaction. The advancement in characterization techniques, especially scattering techniques, can help in study of opto-electronic properties of 2D TMDCs along with determination of layer variations and investigation of defect. In this review, the fabrication and applications are well summarized to optimize an appropriate WS-TMDCs assembly according to focused field of research. Here, the scientific investigations on 2D WS are studied in terms of its structure, role of scattering techniques to study its properties, and synthesis routes followed by its potential applications for environmental remediation (e.g., photocatalytic degradation of pollutants, gas sensing, and wastewater treatment) and biomedical domain (e.g., drug delivery, photothermal therapy, biomedical imaging, and biosensing). Further, a special emphasis is given to the significance of 2D WS as a substrate for surface-enhanced Raman scattering (SERS). The discussion is further extended to commercial and industrial aspects, keeping in view major research gaps in existing research studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2023.103024 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFJ Adolesc Health
January 2025
The National Alliance to Advance Adolescent Health/Got Transition, Washington, D.C.
Purpose: There is a paucity of evidence examining clinician experiences with structured health-care transition (HCT) programs. Among HCT Learning Collaborative participants, this study describes clinician experiences with implementation of a structured HCT process: Got Transition's 6 Core Elements.
Methods: Representative members from 6 health systems designed a survey to collect clinician feedback regarding HCT and demographic and practice information.
Sci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!