Bacteriophages: Vectors of or weapons against the transmission of antibiotic resistance genes in hospital wastewater systems?

Water Res

Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China. Electronic address:

Published: January 2024

Antimicrobial resistance poses a serious threat to human health and is responsible for the death of millions of people annually. Hospital wastewater is an important hotspot for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). However, little is known about the relationship between phages and ARGs in hospital wastewater systems (HWS). In the present study, the viral diversity of 12 HWSs using data from public metagenomic databases was investigated. Viruses were widely found in both the influent and effluent of each HWS. A total of 45 unique ARGs were carried by 85 viral contigs, which accounted for only 0.14% of the total viral populations, implying that ARGs were not commonly present in phages. Three efflux pump genes were identified as shared between phages and bacterial genomes. However, the predominant types of ARGs in HWS such as aminoglycoside- and beta-lactam-resistance genes were rarely found in phages. Based on CRISPR spacer and tRNA matches, interactions between 171 viral contigs and 60 antibiotic-resistant genomes were predicted, including interactions involving phages and vancomycin-resistant Enterococcus_B faecium or beta-lactam-resistant Klebsiella pneumoniae. More than half (56.1%) of these viral contigs indicated lytic and none of them carried ARGs. As the vOTUs in this study had few ARGs and were primarily lytic, HWS may be a valuable source for phage discovery. Future studies will be able to experimentally validate these sequence-based results to confirm the suitability of HWS phages for pathogen control measures in wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120833DOI Listing

Publication Analysis

Top Keywords

hospital wastewater
12
viral contigs
12
args
7
phages
6
hws
5
viral
5
bacteriophages vectors
4
vectors weapons
4
weapons transmission
4
transmission antibiotic
4

Similar Publications

Vancomycin-Resistant Enterococcus faecium: A current perspective on resilience, adaptation, and the urgent need for novel strategies.

J Glob Antimicrob Resist

January 2025

UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal. Electronic address:

Vancomycin-resistant Enterococcus faecium (VREfm) has become a critical opportunistic pathogen, urgently requiring new antimicrobial strategies due to its rising prevalence and significant impact on patient safety and healthcare costs. VREfm continues to evolve through mutations and the acquisition of new genes via horizontal gene transfer, contributing to resistance against several last-resort antibiotics. Although primarily hospital-associated, VREfm is also detected in the community, food chain, livestock, and environmental sources like wastewater, indicating diverse transmission pathways and the need for a One Health approach.

View Article and Find Full Text PDF

Light-Programmable g-CN Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation.

Research (Wash D C)

January 2025

Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno 61200, Czech Republic.

Microrobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-CN is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-CN for these applications is still in its early stages.

View Article and Find Full Text PDF

Hospital wastewater (HWW) is a major pollutant that presents significant risks to both environmental and human health. In this study, we developed a novel, inexpensive and highly antibacterial magnetic nanocomposite composed of FeO nanoparticles synthesised from spent pickling liquors, coated with chitosan and then integrated with polyhexamethylene guanidine hydrochloride (FeO@CS@PHMG) using sodium tripolyphosphate (TPP) as a crosslinking agent. The obtained results revealed that the synthesised nanocomposite exhibited high antibacterial activity against and .

View Article and Find Full Text PDF

Allergies have become an important public health issue as their occurrence is reportedly on the rise around the world. Exposure to environmental factors is considered as trigger for allergic diseases. However, there was limited data on the importance of each factor, particularly in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!