A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A blockchain-based federated learning mechanism for privacy preservation of healthcare IoT data. | LitMetric

A blockchain-based federated learning mechanism for privacy preservation of healthcare IoT data.

Comput Biol Med

Department of Computer science, College of Computer, Qassim University, Buraydah, Kingdom of Saudi Arabia.

Published: December 2023

The Corona virus outbreak sped up the process of digitalizing healthcare. The ubiquity of IoT devices in healthcare has thrust the Healthcare Internet of Things (HIoT) to the forefront as a viable answer to the shortage of healthcare professionals. However, the medical field's ability to utilize this technology may be constrained by rules governing the sharing of data and privacy issues. Furthermore, endangering human life is what happens when a medical machine learning system is tricked or hacked. As a result, robust protections against cyberattacks are essential in the medical sector. This research uses two technologies, namely federated learning and blockchain, to solve these problems. The ultimate goal is to construct a trusted federated learning system on the blockchain that can predict people who are at risk for developing diabetes. The study's findings were deemed satisfactory as it achieved a multilayer perceptron accuracy of 97.11% and an average federated learning accuracy of 93.95%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107630DOI Listing

Publication Analysis

Top Keywords

federated learning
16
learning system
8
learning
5
healthcare
5
blockchain-based federated
4
learning mechanism
4
mechanism privacy
4
privacy preservation
4
preservation healthcare
4
healthcare iot
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!