Niacin, an age-old lipid-lowering drug, acts through the hydroxycarboxylic acid receptor 2 (HCAR2), a G-protein-coupled receptor (GPCR). Yet, its use is hindered by side effects like skin flushing. To address this, specific HCAR2 agonists, like MK-6892 and GSK256073, with fewer adverse effects have been created. However, the activation mechanism of HCAR2 by niacin and these new agonists is not well understood. Here, we present three cryoelectron microscopy structures of Gi-coupled HCAR2 bound to niacin, MK-6892, and GSK256073. Our findings show that different ligands induce varying binding pockets in HCAR2, influenced by aromatic amino acid clusters (W91, H161, W188, H189, and F193) from receptors ECL1, TM4, and TM5. Additionally, conserved residues R111 and Y284, unique to the HCA receptor family, likely initiate activation signal propagation in HCAR2. This study provides insights into ligand recognition, receptor activation, and G protein coupling mediated by HCAR2, laying the groundwork for developing HCAR2-targeted drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2023.113406 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.
Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Pharmacology, Medical School of Southeast University, Nanjing, China. Electronic address:
Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression.
View Article and Find Full Text PDFStem Cell Reports
January 2025
Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China. Electronic address:
Adult hippocampal neurogenesis (AHN), the process of generating new neurons from adult neural stem/progenitor cells (NSPCs), is crucial for cognitive functions and is influenced by numerous factors, including metabolic processes. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme in glycolysis, catalyzes the production of pyruvate, which undergoes either oxidative phosphorylation or anaerobic oxidation. We observed that PKM2 is highly expressed in NSPCs, but its significance remains unclear for AHN and cognition.
View Article and Find Full Text PDFJ Pharm Biomed Anal
December 2024
School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China.
A small molecule, (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate (SEC), has been reported to be capable of suppressing metastasis of prostate cancer (PCa) cells. In this study, SEC was used to study the metabolic responses of PCa cell lines (LNCaP, PC3, and DU145) with different metastatic potential and the alterations of mTOR, p-mTOR, AMPK, and p-AMPK levels, when the PCa cells were inhibited. The ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based analysis showed that SEC induced the decreases of intracellular metabolites including glutamic acid, glutamine, and histidine (LNCaP); creatinine, citric acid/isocitric acid, and aspartic acid (PC3); and spermidine, S-hydroxymethylglutathione, LPE (20:3), and palmitic amide (DU145), and the increases of intracellular LPC (18:0) (LNCaP); tyrosine, pyroglutamic acid/pyrroline hydroxycarboxylic acid (PC3); and tyrosine, phenylalanine, phenylacetylglycine, spermine, histidine, and choline (DU145).
View Article and Find Full Text PDFCell
December 2024
Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. Electronic address:
Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools for remotely controlling cellular signaling, neural activity, behavior, and physiology. Using a structure-guided approach, we provide a peripherally restricted Gi-DREADD, hydroxycarboxylic acid receptor DREADD (HCAD), whose native receptor is minimally expressed in the brain, and a chemical actuator that does not cross the blood-brain barrier (BBB). This was accomplished by combined mutagenesis, analoging via an ultra-large make-on-demand library, structural determination of the designed DREADD receptor via cryoelectron microscopy (cryo-EM), and validation of HCAD function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!