The availability of computational hardware and developments in (medical) machine learning (MML) increases medical mixed realities' (MMR) clinical usability. Medical instruments have played a vital role in surgery for ages. To further accelerate the implementation of MML and MMR, three-dimensional (3D) datasets of instruments should be publicly available. The proposed data collection consists of 103, 3D-scanned medical instruments from the clinical routine, scanned with structured light scanners. The collection consists, for example, of instruments, like retractors, forceps, and clamps. The collection can be augmented by generating likewise models using 3D software, resulting in an inflated dataset for analysis. The collection can be used for general instrument detection and tracking in operating room settings, or a freeform marker-less instrument registration for tool tracking in augmented reality. Furthermore, for medical simulation or training scenarios in virtual reality and medical diminishing reality in mixed reality. We hope to ease research in the field of MMR and MML, but also to motivate the release of a wider variety of needed surgical instrument datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640540PMC
http://dx.doi.org/10.1038/s41597-023-02684-0DOI Listing

Publication Analysis

Top Keywords

surgical instrument
8
medical instruments
8
collection consists
8
reality medical
8
medical
6
collection
5
reality
5
instrument collection
4
collection computer
4
computer vision
4

Similar Publications

Adapting a style based generative adversarial network to create images depicting cleft lip deformity.

Sci Rep

January 2025

Division of Plastic, Craniofacial and Hand Surgery, Sidra Medicine, and Weill Cornell Medical College, C1-121, Al Gharrafa St, Ar Rayyan, Doha, Qatar.

Training a machine learning system to evaluate any type of facial deformity is impeded by the scarcity of large datasets of high-quality, ethics board-approved patient images. We have built a deep learning-based cleft lip generator called CleftGAN designed to produce an almost unlimited number of high-fidelity facsimiles of cleft lip facial images with wide variation. A transfer learning protocol testing different versions of StyleGAN as the base model was undertaken.

View Article and Find Full Text PDF

The patient activation measure (PAM), a recognized measure of how active patients are in their care, is one of the most extensively used, widely translated, and tested instruments worldwide in measuring patient activation. This study aimed to assess the psychometric properties and construct validity of the Italian version of the 13-item Patient Activation Measure (PAM13-I) among patients undergoing elective laparoscopic cholecystectomy. A multicenter study was conducted across 111 surgical units in Italy.

View Article and Find Full Text PDF

Anterior communicating aneurysm clipping: How I do it.

Acta Neurochir (Wien)

January 2025

Division of Pediatric Neurosurgery, Department of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Up to 40% of intracranial aneurysms arise from the anterior cerebral artery and anterior communicating artery (ACA-ACoA) complex. The vast variability of vessel anomalies and the surrounding critical structures correlate with severe morbidity and mortality rates in case of rupture. In the era of cutting-edge advantages of endovascular procedures, surgical expertise is reducing.

View Article and Find Full Text PDF

Introduction: The storage of reusable medical devices (RMDs) is the final reprocessing phase and the step that directly precedes point-of-care delivery. Reusable medical devices, including surgical tools necessitating sterilization and semicritical devices such as endoscopes, undergo high-level disinfection. The rigorous reprocessing protocols and subsequent storage of RMDs are crucial in preserving their sterility and asepsis.

View Article and Find Full Text PDF

Background: A surgical robot with force feedback can guarantee precise and gentle manipulation for endometrial repair, ensuring the effectiveness and safety of the manipulation. However, the design of force sensors for surgical robots is challenging due to the limited anatomical space and the requirement for continuous rotation.

Methods: This paper presents a novel force-sensing surgical instrument for endometrial repair, including an inner scraping instrument and an outer force sensing sheath.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!