Intraoral low-temperature degradation of monolithic zirconia dental prostheses: 5-year results of a prospective clinical study with ex vivo monitoring.

Dent Mater

Dental Biomaterials Research Unit (d-BRU), University of Liège (ULiège), 45 Quai G. Kurth, Liège 4020, Belgium; Department of Fixed Prosthodontics, Institute of Dentistry, University of Liège Hospital (CHU), 45 Quai G. Kurth, Liège 4020, Belgium. Electronic address:

Published: February 2024

Objectives: To investigate the 5-year intraoral evolution and kinetics of low-temperature degradation (LTD) of second-generation monolithic prostheses made of 3% molar yttrium-doped tetragonal zirconia polycrystal (3Y-TZP) and the influence of masticatory mechanical stresses and glaze layer on this evolution.

Methods: A total of 101 posterior tooth elements were included in this prospective clinical study, which comprised ex vivo LTD monitoring (at baseline, 6 months, 1 year, 2 years, 3 years, and 5 years) using Raman spectroscopy (n = 2640 monoclinic phase measurement points per evaluation time) and scanning electron microscopy (SEM). Four types of areas (1-2 mm surface, six on molars, and four on premolars) were analysed on each element surface: occlusal, axial, glazed, or unglazed. Raman mapping, high-resolution SEM, and focused ion beam-SEM were performed on selected samples.

Results: The dental prostheses developed a tetragonal-to-monoclinic transformation at the extreme surface of the material after six months in a buccal environment, and this process increased significantly over time. Over the five years of monitoring, the transformation developed nonuniformly with the presence of localised clusters of monoclinic grains. Tribological stresses generate grain pull-out from these clusters, which may raise questions regarding the release of 3Y-TZP nanoparticles into the body. The prosthesis fracture rate was 4.5% after 5 years.

Significance: LTD developed in vivo on the surfaces of 3Y-TZP dental prostheses and progressed slowly but significantly over time, up to 5 years investigation. However, the effects of aging on the failure rate recorded and of zirconia nanoparticles released into the body require further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2023.11.008DOI Listing

Publication Analysis

Top Keywords

dental prostheses
12
low-temperature degradation
8
prospective clinical
8
clinical study
8
vivo monitoring
8
years years
8
time years
8
years
5
intraoral low-temperature
4
degradation monolithic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!