The sulfate reagent plays a crucial role as an electron acceptor in the sulfidogenic biodegradation process of the BSP assay for assessing the anaerobic biodegradability of organic substrates. However, the specific role and influence of the monovalent cations (sodium or potassium) in the sulfate reagent remain unknown. To address this gap, a series of batch assays were conducted to investigate the mechanistic effects of Na and K. The results demonstrated that sodium has inhibitory effects on BSP assay when the dosage exceeds 8500 mg/L, whereas no adverse effects were observed in the potassium tests (ranging from 1800 to 14400 mg/L). In fact, the presence of K even enhanced the anaerobic biodegradability of organic substrates, and the underlying mechanisms were explored. These findings confirm the influence of cations in the BSP assay for biodegradability assessment and also provide guidance on sulfate dosage strategies for BSP assay application in anaerobic biotechnologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129939 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!