Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibiotic resistance has become the major concern for global public health. Phage therapy is being considered as an alternative for antibiotics to treat the multidrug resistant bacterial infections. Bacteriophage therapeutic developments has faced many challenges, including the drug formulations for sustainable phage delivery. The nano-emulsion platform has been described as the best approach to retain phage efficacy, shelf life and stability. Encapsulated phage drugs ensure stable delivery of phages to the target site and integrate in the system. In this review, our main focus is on the nano-emulsion encapsulation of bacteriophages and its effects towards the phage therapeutic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biologicals.2023.101725 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!