Biomolecular insights into the inhibition of heavy metals on reductive dechlorination of 2,4,6-trichlorophenol in Pseudomonas sp. CP-1.

Water Res

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China. Electronic address:

Published: December 2023

Influences of heavy metal exposure to the organohalide respiration process and the related molecular mechanism remain poorly understood. In this study, a non-obligate organohalide respiring bacterium, Pseudomonas sp. strain CP-1, was isolated and its molecular response to the five types of commonly existed heavy metal ions were thoroughly investigated. All types of heavy metal ions posed inhibitory effects on 2,4,6-trichlorophenol dechlorination activity and cell growth with the varied degree. Exposure to Cu (II) showed the most serious inhibitive effects on dechlorination even at the lowest concentration of 0.05 mg/L, while the inhibition by As (V) was the least with the removal kinetic constant k decreased to 0.05 under 50 mg/L. Further, multi-omics analysis found compared with Cu (II), As (V) exposure led to the insignificant downregulation of a variety of biosynthesis processes, which would be one possible account for the less inhibited activity. More importantly, the inhibited mechanisms on the organohalide respiration catabolism of strain CP-1 were firstly revealed. Cu (II) stress severely downregulated NADH generation during TCA cycle and electron donation of organohalide respiration process, which might decrease the reducing power required for organohalide respiration. While both Cu (II) and As (Ⅴ) inhibited substrate level phosphorylation during TCA cycle, as well as electron transfer and ATP generation during organohalide respiration. Meanwhile, CprA-2 was confirmed as the responsible reductive dehalogenase in charge of 2,4,6-TCP dechlorination, and transcriptional and proteomic studies confirmed the directly inhibited gene transcription and expression of CprA-2. The in-depth reveal of inhibitory effects and mechanism gave theoretical supports for alleviating heavy metal inhibition on organohalide respiration activity in groundwater co-contaminated with organohalides and heavy metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120836DOI Listing

Publication Analysis

Top Keywords

organohalide respiration
24
heavy metal
16
heavy metals
8
respiration process
8
strain cp-1
8
metal ions
8
inhibitory effects
8
tca cycle
8
organohalide
7
heavy
6

Similar Publications

Chlorinated ethenes are prevalent contaminants in industrial wastewater that detrimentally affect human health. As elevated tetrachloroethene (PCE) concentrations (18.0-18.

View Article and Find Full Text PDF

Distribution of microbial taxa and genes degrading halogenated organic pollutants in the mangroves.

J Hazard Mater

January 2025

Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China. Electronic address:

Anthropogenic activities have led to serious contamination of halogenated organic pollutants (HOPs), such as PCBs, PBDEs, and HBCDs, in the mangrove wetland. Biodegradation of HOPs is generally driven by environmental microorganisms harboring dehalogenase genes. However, little is known if HOPs can affect the distributions of HOPs-degrading bacteria and dehalogenase genes in the mangrove wetlands.

View Article and Find Full Text PDF

Organohalide respiration: retrospective and perspective through bibliometrics.

Front Microbiol

December 2024

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.

Organohalide-respiring bacteria (OHRB) play a pivotal role in the transformation of organohalogens in diverse environments. This bibliometric analysis provides a timely overview of OHRB research trends and identifies knowledge gaps. Publication numbers have steadily increased since the process was discovered in 1982, with fluctuations in total citations and average citations per publication.

View Article and Find Full Text PDF

Reductive dechlorination of trichloroethene at concentrations approaching saturation by a Desulfitobacterium-containing community.

J Hazard Mater

December 2024

School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China; State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment,  Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China. Electronic address:

In dense nonaqueous phase liquid (DNAPL) contaminant source zones, aqueous concentrations of trichloroethene (TCE) in groundwater may approach saturation levels (8.4 mM). It is generally believed that such saturation concentrations are toxic to organohalide-respiring bacteria (OHRB), thus limiting the effectiveness of bioremediation.

View Article and Find Full Text PDF

Evaluating advancements and opportunities in electro-assisted biodehalogenation of emerging halogenated contaminants.

Bioresour Technol

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:

Article Synopsis
  • Electro-assisted biodehalogenation (EASB) is a strategy that helps speed up the breakdown of harmful
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!