A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Absolute configuration assignment of highly fluorinated carboxylic acids via VCD and MRR spectroscopy. | LitMetric

Chiral analysis has become a crucial step in studying the stereospecific synthesis of Active Pharmaceutical Ingredients (APIs). Both Vibrational Circular Dichroism (VCD) and Molecular Rotational Resonance (MRR) spectroscopy are capable of determining absolute configurations (ACs) via comparison of experimental and calculated data. In this regard, each technique has its own caveats. In VCD analysis, accurate prediction of the normal modes as well as rigorous conformational searches of both the analyte and potential (self-)aggregation products are required to optimally match experimental spectra. In MRR analysis, chiral species are resolved through complexation with a chiral tag to prepare spectrally distinct diastereomeric complexes. Although individual complex isomers can be distinguished, spectral assignments need to be matched to unique isomer geometries for unambiguous AC assignment. In this work, the ACs of two highly fluorinated carboxylic acids were successfully assigned using VCD and MRR spectroscopy. In the VCD analysis, the M06-2X functional was demonstrated to be superior to B3LYP and B3LYP-GD3 in accurately predicting the C-F normal modes and both monomeric and dimeric spectral contributions were observed. In a similar analysis with broadband MRR, most experimentally identified geometries had more than one possible computational match. Nevertheless, careful consideration of the chiral tag, as well as additional isomer assignments, resulted in successful assignment of the AC. This comparative study demonstrates the power of contemporary VCD analysis and the unique contributions of MRR to the analytical toolbox.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.123625DOI Listing

Publication Analysis

Top Keywords

mrr spectroscopy
12
vcd analysis
12
highly fluorinated
8
fluorinated carboxylic
8
carboxylic acids
8
vcd mrr
8
normal modes
8
chiral tag
8
vcd
6
mrr
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!