Soda lakes are naturally occurring ecosystems characterized by extreme environmental conditions especially high pH and salinity levels but harboring valuable microbial communities with medical and biotechnological potentials. Lake Natron is one of the soda lakes situated in eastern branch of the East African Gregory Rift valley, Tanzania. In this study, the taxonomy and phylogenetic diversity of Actinomycetota species were explored in Lake Natron using molecular techniques. The sequencing of their 16S rRNA gene resulted into 13 genera of phylum Actinomycetota namely Streptomyces, Microbacterium, Nocardiopsis, Gordonia, Dietzia, Micromonospora, Microcella, Pseudarthrobacter, Nocardioides, Actinotalea, Cellulomonas, Isoptericola, and Glutamicibacter. We describe for the first time, the isolation of Streptomyces lasalocidi, S. harbinensis, S. anthocyanicus, Microbacterium aureliae, Pseudarthrobacter sp., Nocardioides sp. and Glutamicibacter mishrai from soda lake habitats. It also reports for the first time, the isolation of Gordonia spp., Microcella sp. and Actinotalea sp. from an East African Soda Lake as well as isolation of S. pseudogriseolus, S. calidiresistens and Micromonospora spp. from a Tanzania soda lake. Furthermore, two putative novel species of the phylum Actinomycetota were identified. Given that Actinomycetota are known potential sources of important biotechnological compounds, we recommend the broadening of the scope of bioprospection in future to include the novel species from Lake Natron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2023.127543 | DOI Listing |
Indian J Microbiol
December 2024
Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt.
This study aimed to investigate the bioactive metabolites produced by WAE1, an actinomycete isolated from El-Hamara Lake in Egypt. The discovery of new bioactive compounds from natural sources is crucial for the advancement of therapeutic treatments, and this study aimed to contribute to this field by exploring the potential of WAE1 as a source of such compounds. WAE1 was screened for its ability to produce antimicrobial, antioxidant, and anti-inflammatory metabolites.
View Article and Find Full Text PDFMicrobiol Res
January 2024
Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania. Electronic address:
Soda lakes are naturally occurring ecosystems characterized by extreme environmental conditions especially high pH and salinity levels but harboring valuable microbial communities with medical and biotechnological potentials. Lake Natron is one of the soda lakes situated in eastern branch of the East African Gregory Rift valley, Tanzania. In this study, the taxonomy and phylogenetic diversity of Actinomycetota species were explored in Lake Natron using molecular techniques.
View Article and Find Full Text PDFBiol Open
November 2022
Department of Biology, University of York, York YO10 5DD, UK.
Most fish excrete their nitrogenous waste across the gills as ammonia through the activity of the Rhesus glycoprotein ammonium transporters. In contrast, fish of the subgenus Alcolapia (Oreochromis) are the only vertebrates that survive the extreme conditions of the soda lakes of Natron and Magadi in East Africa and have evolved adaptations to the highly alkaline waters including the ability to excrete their nitrogenous waste as urea. Nevertheless, Alcolapia retain the Rhesus glycoprotein genes in their genomes and using two heterologous expression systems, we demonstrate that Alcolapia Rhbg is capable of moving ammonia.
View Article and Find Full Text PDFSci Rep
March 2019
Université libre de Bruxelles (ULB), Atmospheric Spectroscopy, Service de Chimie Quantique et Photophysique, Brussels, Belgium.
In a recent global analysis of satellite-derived atmospheric NH data, a hotspot was observed in the vicinity of Lake Natron, Tanzania. The lake is in the centre of an endorheic (limited drainage) basin and has shallow, saline-alkaline waters. Its remote location and the absence of nearby large anthropogenic sources suggest that the observed NH is mainly of natural origin.
View Article and Find Full Text PDFEvolution
December 2016
Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom.
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!