Antimicrobial resistance is a pandemic problem, causing substantial health and economic burdens. Antimicrobials are extensively used in livestock and aquaculture, exacerbating this global threat. Fostering the prudent use of antimicrobials will safeguard animal and human health. A lack of knowledge about alternatives to replace antimicrobials, and their effectiveness under field conditions, hampers changes in farming practices. This work aimed to understand the impact of strategies to reduce antimicrobial usage (AMU) in livestock and aquaculture, under field conditions, using a structured scoping literature review. The Extension for Scoping Reviews of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (PRISMA-ScR) were followed and the Patient, Intervention, Comparison, Outcome, Time and Setting (PICOTS) framework used. Articles were identified from CAB Abstracts, MEDLINE and Scopus. A total of 7505 unique research articles were identified, 926 of which were eligible for full-text assessment; 203 articles were included in data extraction. Given heterogeneity across articles in the way alternatives to antimicrobials or interventions against their usage were described, there was a need to standardize these by grouping them in categories. There were differences in the impacts of the strategies between and within species; this highlights the absence of a 'one-size-fits-all' solution. Nevertheless, some options seem more promising than others, as their impacts were consistently equivalent or positive when compared with animal performance using antimicrobials. This was particularly the case for bioactive protein and peptides, and feed/water management. The outcomes of this work provide data to inform cost-effectiveness assessments of strategies to reduce AMU.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761277PMC
http://dx.doi.org/10.1093/jac/dkad350DOI Listing

Publication Analysis

Top Keywords

strategies reduce
12
livestock aquaculture
12
field conditions
12
conditions structured
8
structured scoping
8
scoping literature
8
literature review
8
articles identified
8
antimicrobials
6
strategies
4

Similar Publications

Opposing roles of p38α-mediated phosphorylation and PRMT1-mediated arginine methylation in driving TDP-43 proteinopathy.

Cell Rep

January 2025

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS.

View Article and Find Full Text PDF

As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.

View Article and Find Full Text PDF

In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.

View Article and Find Full Text PDF

The common cold coronaviruses are a source of ongoing morbidity and mortality particularly among elderly and immunocompromised individuals. While cross-reactive immune responses against multiple coronaviruses have been described following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, it remains unclear if these confer any degree of cross-protection against the common cold coronaviruses. A recombinant fowl adenovirus vaccine expressing the SARS-CoV-2 spike protein (FAdV-9-S19) was generated, and protection from SARS-CoV-2 challenge was shown in K18-hACE2 mice.

View Article and Find Full Text PDF

Unlabelled: Mercury pollution is a kind of heavy metal pollution with great harm and strong toxicity which exists worldwide. Some microorganisms can convert highly toxic methylmercury into inorganic mercury compounds with significantly reduced toxicity. This is an effective means of methylmercury pollution remediation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!