The effect of seed treatment with salicylic acid (SA) on the carbonic anhydrase (CA) activity, photosynthesis rate, stomatal conductance, and pigment content in wheat leaves was studied at an optimal zinc content (2 μM) and zinc excess (1500 μM). It was shown for the first time that the CA activity and stomatal conductance increased upon seed treatment with SA at the optimal zinc content as compared with untreated plants, while the photosynthesis rate was not affected. When zinc was in excess in the root zone, seed treatment with SA decreased the CA activity to a greater extent, but the photosynthesis rate was higher than in untreated plants, apparently due to an increase in the contents of chlorophylls and carotenoids and stomatal conductivity. It was concluded that SA is involved in the protective and adaptive responses of wheat plants to excess environmental zinc along with other nonhormonal factors and hormones.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0012496623700758DOI Listing

Publication Analysis

Top Keywords

seed treatment
16
photosynthesis rate
16
stomatal conductance
12
zinc excess
12
treatment salicylic
8
salicylic acid
8
acid carbonic
8
carbonic anhydrase
8
anhydrase activity
8
activity photosynthesis
8

Similar Publications

Background: The escalating global prevalence of food allergies has intensified the need for hypoallergenic food products. Transglutaminase (TGase)-mediated crosslinking has garnered significant attention for its potential to reduce the allergenicity of food proteins. This study aimed to investigate the effects of TGase crosslinking on the potential allergenicity and conformational changes in a dual-protein system composed of β-lactoglobulin (β-LG) and soy protein isolate (SPI) at varying mass ratios (10:0, 7:3, 5:5, 3:7 and 0:10 (w/w)).

View Article and Find Full Text PDF

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

Targeting protein-ligand neosurfaces with a generalizable deep learning tool.

Nature

January 2025

Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland.

Molecular recognition events between proteins drive biological processes in living systems. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field.

View Article and Find Full Text PDF

This study compared two Annona squamosa L. cultivars, Abdelrazik (Annona A.) and Balady (Annona B.

View Article and Find Full Text PDF

Assessing fetal radiation dose from iodine-125 seeds in pregnant breast cancer patients: an updated model.

Phys Med Biol

January 2025

Department of Medical Physics, Jeroen Bosch Ziekenhuis, Henri Dunantstraat 1, 's-Hertogenbosch, 5223GZ, NETHERLANDS.

The treatment of breast cancer during pregnancy requires careful consideration of consequences for both maternal and fetal health. In non-pregnant patients, the use of radioactive iodine-125 (125I)-seeds is standard practice for localising non-palpable breast tumors before breast-conserving surgery. However, the use of 125I-seeds in pregnant patients has been avoided due to concerns about fetal radiation exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!