Idiopathic Pulmonary Fibrosis (IPF) is a progressively fatal and incurable disease characterized by the loss of alveolar structures, increased epithelial-mesenchymal transition (EMT), and aberrant tissue repair. In this study, we investigated the role of Nuclear Factor I-B (NFIB), a transcription factor critical for lung development and maturation, in IPF. Using both human lung tissue samples from patients with IPF, and a mouse model of lung fibrosis induced by bleomycin, we showed that there was a significant reduction of NFIB both in the lungs of patients and mice with IPF. Furthermore, our in vitro experiments using cultured human lung cells demonstrated that the loss of NFIB was associated with the induction of EMT by transforming growth factor beta (TGF-β). Knockdown of NFIB promoted EMT, while overexpression of NFIB suppressed EMT and attenuated the severity of bleomycin-induced lung fibrosis in mice. Mechanistically, we identified post-translational regulation of NFIB by miR-326, a miRNA with anti-fibrotic effects that is diminished in IPF. Specifically, we showed that miR-326 stabilized and increased the expression of NFIB through its 3'UTR target sites for Human antigen R (HuR). Moreover, treatment of mice with either NFIB plasmid or miR-326 reversed airway collagen deposition and fibrosis. In conclusion, our study emphasizes the critical role of NFIB in lung development and maturation, and its reduction in IPF leading to EMT and loss of alveolar structures. Our study highlights the potential of miR-326 as a therapeutic intervention for IPF. The schema shows the role of NFIB in maintaining the normal epithelial cell characteristics in the lungs and how its reduction leads to a shift towards mesenchymal cell-like features and pulmonary fibrosis. A In normal lungs, NFIB is expressed abundantly in the epithelial cells, which helps in maintaining their shape, cell polarity and adhesion molecules. However, when the lungs are exposed to factors that induce pulmonary fibrosis, such as bleomycin, or TGF-β, the epithelial cells undergo epithelial to mesenchymal transition (EMT), which leads to a decrease in NFIB. B The mesenchymal cells that arise from EMT appear as spindle-shaped with loss of cell junctions, increased cell migration, loss of polarity and expression of markers associated with mesenchymal cells/fibroblasts. C We designed a therapeutic approach that involves exogenous administration of NFIB in the form of overexpression plasmid or microRNA-326. This therapeutic approach decreases the mesenchymal cell phenotype and restores the epithelial cell phenotype, thus preventing the development or progression of pulmonary fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072886 | PMC |
http://dx.doi.org/10.1007/s00018-023-05005-1 | DOI Listing |
Pediatr Pulmonol
January 2025
Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Boulevard Pinel, Lyon, France.
Background: New CFTR Modulator triple therapy Elexacaftor-Ivacaftor-Tezacaftor (ETI) prove efficacy in pulmonary outcomes. However, its impact on nasal sinus symptoms in children has not been specifically studied. The aim of this study is to evaluate the impact of this therapy on nasal sinus symptomatology in children aged 6-12 years.
View Article and Find Full Text PDFPediatr Pulmonol
January 2025
Department of Pediatrics, Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University, Atlanta, Georgia, USA.
Background: Cystic Fibrosis Foundation guidelines recommend human milk (HM) as the ideal source of nutrition for children with CF (cwCF). Despite known pulmonary and nutritional benefits, fewer cwCF ever receive HM compared to the general population. Early nutrition choices are preference-sensitive, yet little is known about the factors that impede or sustain HM feeding among parents of cwCF.
View Article and Find Full Text PDFRespir Med Case Rep
January 2025
Department of Rheumatology of Lucania - UOSD of Rheumatology, "Madonna delle Grazie" Hospital, Matera, Italy.
Background: Anti-Ku antibodies are autoantibodies directed against the Ku protein complex involved in DNA repair. They are typically associated with overlap syndromes featuring polymyositis and systemic sclerosis. Isolated pulmonary involvement without myositis is exceedingly rare.
View Article and Find Full Text PDFCureus
December 2024
Medicine, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, PRT.
Anti-glomerular basement membrane disease is a rare small vessel vasculitis caused by the deposition of immunoglobulin G (IgG) autoantibodies in the basement membrane of glomerular capillaries and lung alveoli, leading to rapidly progressive renal failure and/or alveolar hemorrhage. We report the case of an 83-year-old female patient presenting with uremic symptoms, rapidly progressive kidney failure, and a high titer of anti-glomerular basement membrane antibodies. Given the urgent need for kidney replacement therapy, the substantial fibrosis and glomerular scarring observed in the kidney biopsy suggesting a chronic process, and the absence of pulmonary involvement, neither immunosuppressive treatment nor plasmapheresis was initiated, since a low likelihood of a favorable response to these interventions was expected.
View Article and Find Full Text PDFCureus
December 2024
Pulmonology, Jinnah Postgraduate Medical Centre, Karachi, PAK.
Background Interstitial lung diseases (ILDs) are a group of non-infectious diseases characterized by interstitial inflammation and fibrosis on histological examination. Gastroesophageal reflux disease (GERD) is common in this patient population, but whether there is a causal or coincidental relationship is not yet clear. It still remains unsettled how to diagnose GERD, and the role of different treatment modalities for GERD, in these lung disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!