Dental caries is the most common oral disease and the most common cause of resin restorations. In minimally invasive dentistry, the principle behind cavity preparation is to remove external caries-infected dentin (CID) and preserve internal caries-affected dentin (CAD) and sound dentin (SD). The cavity floor is mainly composed of CAD, but the poor bonding performance of CAD has become a widespread concern. This study evaluated the performance of a new collagen-reactive monomer (ITCM) used as a primer to improve the bonding performance of CAD. The experimental specimens were grouped as follows: SD, CAD, and ITCM-pretreated CAD (CAD-ITCM). Dentin slices were obtained for attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis. The bonded samples were subjected to microtensile bond strength analysis after 24 h of water storage or aging by thermocycling, and the bonding interface quality was evaluated by nanoleakage assessment, interfacial nanoindentation testing, and in situ zymography. Cytotoxicity experiments with ITCM were performed. ATR-FTIR showed that the isocyanate groups in ITCM can covalently bind and form hydrogen bonds with the collagen in CAD to mediate chemical bonding. ITCM pretreatment significantly improved the bond strength of CAD ( < 0.05), reduced interfacial nanoleakage, improved the sealing of the bonding interface, enhanced the homogeneity of the hybrid layer, and inhibited matrix metalloproteinase activity. In addition, ITCM presented acceptable biocompatibility for dental restorative application. Taken together, this study reported the application of ITCM to induce collagen-based chemical bonding in the CAD bonding system, which fills the gap in strategies to improve the bonding performance of CAD immediately and after aging and has important clinical application prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00220345231199416 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute, Low-Carbon Conversion Science and Engineering Cente, 100 Haike Road, 201203, Shanghai, CHINA.
Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
The "catalytic triad" present at the active site of ribonuclease A (RNase A) is responsible for the cleavage of the 5'-phosphodiester bond; amino acid residues His12, Lys41 and His119 constituting this triad provide a positively charged environment at the physiological pH. Based on docking studies, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles (1,4,5-TTs) were identified as a new class of RNase A inhibitors. Therefore, two different groups of 1,4,5-TTs, functionalized with carboxylic acid groups, were synthesized by reacting pre functionalized butyne-1,4-diol derivatives with several aryl/alkyl azides under solvent and catalyst free conditions.
View Article and Find Full Text PDFJ Esthet Restor Dent
January 2025
Magne Education, Beverly Hills, California, USA.
Objective: Chemicals used during canal disinfection and endodontic sealers have a deleterious effect on dentin bond strength. The aim of this study was to evaluate a novel clinical sequence to improve the resin-dentin microtensile bond strength (μTBS) to endodontically treated teeth.
Materials And Methods: Twenty human molars were distributed in four experimental groups (n = 5, N = 20): C-control group without exposure to any endodontic chemical substances (2.
Angew Chem Int Ed Engl
January 2025
Shanghai Institute of Organic Chemistry, Materials Science, 345 lingling Road, 200032, Shanghai, CHINA.
Three-dimensional covalent organic frameworks (3D COFs), a class of highly porous crystalline polymers, have exhibited great potentials in many applications. However, the reported topologies of 3D COFs have been limited to high-symmetry crystal systems, which significantly hindered the development of such functional materials. Herein, we demonstrate the first construction of four highly crystalline orthorhombic 3D COFs with an unprecedented fmj topology, based on judiciously choosing rotatable monomers.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Institute of Infectious Disease and Infection Control, Jena University Hospital, Jena, 07747, Germany.
In our prior research, polymer nanoparticles (NPs) containing tobramycin displayed robust antibacterial efficacy against biofilm-embedded () and (. ) cells, critical pathogens in cystic fibrosis. In the current study, we investigated the deposition of a nanoparticulate carrier composed of poly(d,l-lactic--glycolic acid) (PLGA) and poly(ethylene glycol)--PLGA (PEG-PLGA) that was either covalently bonded with cyanine-5-amine (Cy5) or noncovalently bound with freely embedded cationic rhodamine B (RhB), which served as a drug surrogate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!