Neurotoxicity induced by psychoactive substances is often accompanied by an imbalance of intracellular calcium ions. It is unclear whether calcium ions play a role in the toxicity induced by psychoactive substances. In the present study, we aimed to evaluate the occurrence of calcium dysregulation and its contribution to cytotoxicity in human neurotypic SH-SY5Y cells challenged with a recently developed psychoactive substance 4-methylethcathinone (4-MEC). An increase in the intracellular calcium was detected by inductively coupled plasma atomic emission spectrometry and Fluo-3 AM dye in SH-SY5Y cells after being treated with 4-MEC. The increase of intracellular Ca level mediated G0/G1 cell cycle arrest and ROS/endoplasmic reticulum stress-autophagy signaling pathways to achieve the toxicity of 4-MEC. In particular, N-acetyl-L-cysteine, a classical antioxidant, was found to be a potential treatment for 4-MEC-induced toxicity. Taken together, our results demonstrate that an increase in intracellular calcium content is one of the mechanisms of 4-MEC-induced toxicity. This study provides a molecular basis for the toxicity mechanism and therapeutic intervention of psychoactive substances.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.4560DOI Listing

Publication Analysis

Top Keywords

sh-sy5y cells
12
psychoactive substances
12
intracellular calcium
12
increase intracellular
12
induced psychoactive
8
calcium ions
8
4-mec increase
8
4-mec-induced toxicity
8
calcium
5
toxicity
5

Similar Publications

Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.

View Article and Find Full Text PDF

Upregulation of p52-ZER6 (ZNF398) increases reactive oxygen species by suppressing metallothionein-3 in neuronal cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:

ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most commonly occurring brain disorder, characterized by the accumulation of amyloid-β (Aβ) and tau, subsequently leading to neurocognitive decline. 3-Amino-1-propanesulfonic acid (TPS) and its prodrug, currently under clinical trial III, serve as promising therapeutic agents targeting Aβ pathology by specifically preventing monomer-to-oligomer formation. Inspired by the potency of TPS prodrug, we hypothesized that conjugating TPS with human serum albumin (HSA) could enhance brain delivery and synergistically inhibit Aβ aggregation in mild to moderate AD.

View Article and Find Full Text PDF

The development of potent glycogen synthase kinase-3β (GSK-3β) inhibitor has been increasingly recognized as the candidate treatment against the multifactorial pathogenic mechanism of Alzheimer's disease (AD). This study prepared various new pyrrolo[2,3-b]pyridine derivatives, evaluated the anti-AD activities and detected the security based on the structure-guided rational design. Our results indicated that many pyrrolo[2,3-b]pyridine derivatives had strong GSK-3β inhibitory activities, particularly compounds 41, 46 and 54, with the half maximal inhibitory concentrations (IC) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!