Missense variants in CYP4B1 associated with increased risk of lung cancer among Chinese Han population.

World J Surg Oncol

Department of Laboratory, Xi'an Yanliang 630 Hospital, East Renmin Road, Yanliang District, Xi'an City, 710000, Shaanxi Province, China.

Published: November 2023

Introduction: Understanding the etiology and risk factors of lung cancer (LC) is the key to developing scientific and effective prevention and control strategies for LC. CYP4B1 genetic polymorphism has been reported to be associated with susceptibility to various diseases. We aimed to explore the association between CYP4B1 genetic variants and LC susceptibility.

Methods: One thousand three hundred thirty-nine participants were recruited to perform an association analysis through SNPStats online software. Statistical analysis of this study was mainly completed by SPSS 22.0 software. False-positive report probability analysis (FPRP) to detect whether the positive findings were noteworthy. Finally, the interaction of SNP-SNP in LC risk was evaluated by multi-factor dimensionality reduction.

Results: We found evidence that missense variants in CYP4B1 (rs2297810, rs4646491, and rs2297809) are associated with LC susceptibility. In particular, genotype GA of CYP4B1-rs2297810 was significantly associated with an increased risk of LC in both overall and stratified analyses (genotype GA: OR (95% CI) = 1.35 (1.08-1.69), p = 0.010). CYP4B1-rs4646491 (overdominant: OR (95% CI) = 1.30 (1.04-1.62), p = 0.023) and CYP4B1-rs2297809 (genotype CT: OR (95% CI) = 1.26 (1.01-1.59), p = 0.046) are also associated with an increased risk of LC. FPRP analysis showed that all positive results in this study are noteworthy findings CONCLUSION: Three missense variants in CYP4B1 (rs2297810, rs4646491, and rs2297809) are associated with increasing risk of LC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638751PMC
http://dx.doi.org/10.1186/s12957-023-03223-2DOI Listing

Publication Analysis

Top Keywords

missense variants
12
variants cyp4b1
12
associated increased
12
increased risk
12
lung cancer
8
cyp4b1 genetic
8
associated susceptibility
8
cyp4b1 rs2297810
8
rs2297810 rs4646491
8
rs4646491 rs2297809
8

Similar Publications

Objective: To investigate the clinical phenotype and molecular pathogenic mechanism of a hereditary coagulation factor V deficiency (FⅤD) family.

Methods: A phase I assay was used to measure coagulation factors II, V, VII, VIII, IX, X, Ⅺ, Ⅻ (FⅡ∶C, FⅤ∶C, FⅦ∶C, FⅧ∶C, FⅨ∶C, FⅩ∶C, FⅪ∶C, FⅫ∶C), activated partial thromboplastin time (APTT) and prothrombin time (PT) to determine the clinical phenotype and molecular pathogenesis of F VD. Prothrombin time (PT) were used for phenotypic identification; high-throughput exome sequencing was applied to screen the whole gene variants, and Sanger sequencing was used to verify the suspected variants in gene; MutationTaster, PolyPhen-2 bioinformatics software was used to predict the pathogenicity of the variants, ClustalX software was used to analyze the amino acid conservatism, and PyMol software was used to simulate the model of the mutant protein.

View Article and Find Full Text PDF

Background/aim: Adult granulosa cell tumor (aGCT) is a rare and challenging ovarian tumor due to its unpredictable recurrence and its associated increased risk of breast and endometrial cancer. Identifying and describing molecular alterations in tumors has become common with the advent of high-throughput sequencing. However, DNA sequencing in rare tumors, such as aGCT, often lacks statistical power due to the limited number of cases in each study, thereby clinical implications of DNA alterations are difficult to interpretate.

View Article and Find Full Text PDF

Phenotypic variability in a family with an inherited KAT6A frameshift variant.

Eur J Med Genet

December 2024

Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Centre for Rare Diseases, Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Denmark.

KAT6A syndrome or Arboleda-Tham Syndrome (ARTHS; OMIM #616268) is a syndromic neurodevelopmental disorder mainly presenting with variable degrees of intellectual disability (ID) and developmental delay (DD), especially speech delay, hypotonia and autism spectrum disorders/behavioral problems. Multiple organ-systems including eyes, heart, gastrointestinal and neurological system can be involved. Other phenotypic features with a suggested association to KAT6A include immune dysfunction and pituitary anomalies.

View Article and Find Full Text PDF

Hepatic fibrinogen storage disease is an uncommon autosomal dominant hereditary illness marked by hypofibrinogenemia and the accumulation of variant fibrinogen in the hepatic endoplasmic reticulum. We present an asymptomatic 15-month-old male with elevated liver enzymes. Test results indicate hypofibrinogenemia.

View Article and Find Full Text PDF

RICTOR variants are associated with neurodevelopmental disorders.

Eur J Hum Genet

December 2024

Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, 4 rue Kirschleger, 67085, Strasbourg, France.

RICTOR is a key component of the mTORC2 signaling complex which is involved in the regulation of cell growth, proliferation and survival. RICTOR is highly expressed in neurons and is necessary for brain development. Here, we report eight unrelated patients presenting with intellectual disability and/or development delay and carrying variants in the RICTOR gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!