Background: High oncogene expression in cancer cells is a major cause of rapid tumor progression and drug resistance. Recent cancer genome research has shown that oncogenes as well as regulatory elements can be amplified in the form of extrachromosomal DNA (ecDNA) or subsequently integrated into chromosomes as homogeneously staining regions (HSRs). These genome-level variants lead to the overexpression of the corresponding oncogenes, resulting in poor prognosis. Most existing detection methods identify ecDNA using whole genome sequencing (WGS) data. However, these techniques usually detect many false positive regions owing to chromosomal DNA interference.
Results: In the present study, an algorithm called "ATACAmp" that can identify ecDNA/HSRs in tumor genomes using ATAC-seq data has been described. High chromatin accessibility, one of the characteristics of ecDNA, makes ATAC-seq naturally enriched in ecDNA and reduces chromosomal DNA interference. The algorithm was validated using ATAC-seq data from cell lines that have been experimentally determined to contain ecDNA regions. ATACAmp accurately identified the majority of validated ecDNA regions. AmpliconArchitect, the widely used ecDNA detecting tool, was used to detect ecDNA regions based on the WGS data of the same cell lines. Additionally, the Circle-finder software, another tool that utilizes ATAC-seq data, was assessed. The results showed that ATACAmp exhibited higher accuracy than AmpliconArchitect and Circle-finder. Moreover, ATACAmp supported the analysis of single-cell ATAC-seq data, which linked ecDNA to specific cells.
Conclusions: ATACAmp, written in Python, is freely available on GitHub under the MIT license: https://github.com/chsmiss/ATAC-amp . Using ATAC-seq data, ATACAmp offers a novel analytical approach that is distinct from the conventional use of WGS data. Thus, this method has the potential to reduce the cost and technical complexity associated ecDNA analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638764 | PMC |
http://dx.doi.org/10.1186/s12864-023-09792-6 | DOI Listing |
Int J Mol Sci
January 2025
Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Jiangsu Province Engineering Research Center of Modern Strawberry Industry/Zhongshan Biological Breeding Laboratory, 50 Zhonglin Road, Nanjing 210014, China.
Light is an important environmental factor affecting the ripening and quality of strawberry fruit. Previous studies have shown that red light treatment can promote strawberry ripening. Gene expression is closely associated with chromatin openness, and changes in chromatin accessibility are crucial for the binding of transcription factors to downstream regulatory sequences.
View Article and Find Full Text PDFSci Data
January 2025
BGI Research, Shenzhen, 518083, China.
The mammalian nervous system controls complex functions through highly specialized and interacting structures. Single-cell sequencing can provide information on cell-type-specific chromatin structure and regulatory elements, revealing differences in chromatin organization between different cell types and their potential roles of these differences in brain function. Here, we generated a chromatin accessibility dataset through single-cell ATAC-seq of 174,593 high-quality nuclei from 16 adult rat brain regions.
View Article and Find Full Text PDFTrends Genet
January 2025
Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA; Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA. Electronic address:
Neuropsychiatric and neurodegenerative diseases have a significant genetic component. Risk variants often affect the noncoding genome, altering cis-regulatory elements (CREs) and chromatin structure, ultimately impacting gene expression. Chromatin accessibility profiling methods, especially assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), have been used to pinpoint disease-associated SNPs and link them to affected genes and cell types in the brain.
View Article and Find Full Text PDFGenomics
January 2025
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology of Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, 8 huanjin Road, Yazhou District, Sanya, City, Hainan Province 572024, China. Electronic address:
Intramuscular fat is an essential component of muscle tissue, and understanding its contribution to skeletal muscle fat infiltration and meat quality, together with the underlying genetic mechanisms, is a major topic in pig husbandry. However, the composition of cell types and gene expression profiles essential for this purpose remain largely unexplored. Here, we performed single-cell transcriptome analysis on muscle tissue from adult pigs and identified 15 cell types, including three previously uncharacterized types of adipocytes: Adipocyte 1, Adipocyte 2, and Aregs.
View Article and Find Full Text PDFCarcinogenesis
January 2025
Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.
The tumor suppressor gene SMARCA4, a critical component of the SWI/SNF chromatin remodeling complex, is frequently inactivated in various cancers, including clear cell renal cell carcinoma (ccRCC). Despite its significance, the role of SMARCA4 in ccRCC development and its potential therapeutic vulnerabilities have not been fully explored. Our research found that SMARCA4 deficiency was associated with poor prognosis and was observed in a subset of high-grade ccRCCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!