Mediolateral weight-shifting is an important aspect of postural control. As it is currently unknown whether a short training session of mediolateral weight-shifting in a virtual reality (VR) environment can improve weight-shifting, we investigated this question and also probed the impact of practice on brain activity. Forty healthy older adults were randomly allocated to a training (EXP, n = 20, age = 70.80 (65-77), 9 females) or a control group (CTR, n = 20, age = 71.65 (65-82), 10 females). The EXP performed a 25-min weight-shift training in a VR-game, whereas the CTR rested for the same period. Weight-shifting speed in both single- (ST) and dual-task (DT) conditions was determined before, directly after, and 24 h after intervention. Functional Near-Infrared Spectroscopy (fNIRS) assessed the oxygenated hemoglobin (HbO) levels in five cortical regions of interest. Weight-shifting in both ST and DT conditions improved in EXP but not in CTR, and these gains were retained after 24 h. Effects transferred to wider limits of stability post-training in EXP versus CTR. HbO levels in the left supplementary motor area were significantly increased directly after training in EXP during ST (change < SEM), and in the left somatosensory cortex during DT (change > SEM). We interpret these changes in the motor coordination and sensorimotor integration areas of the cortex as possibly learning-related.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638445 | PMC |
http://dx.doi.org/10.1038/s41598-023-46645-4 | DOI Listing |
Gut Microbes
December 2025
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In , glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
The Fifth Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China.
Background: Impaired balance and gait in stroke survivors are associated with decreased functional independence. This study aimed to evaluate the effectiveness of unilateral lower-limb exoskeleton robot-assisted overground gait training compared with conventional treatment and to explore the relationship between neuroplastic changes and motor function recovery in subacute stroke patients.
Methods: In this randomized, single-blind clinical trial, 40 patients with subacute stroke were recruited and randomly assigned to either a robot-assisted training (RT) group or a conventional training (CT) group.
J Med Internet Res
December 2024
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
Background: Well-targeted balance, walking, and weight-shift training can improve balance capabilities in the chronic phase of stroke. There is an urgent need for a long-term approach to rehabilitation that extends beyond the acute and subacute phases, supporting participation without increasing the demand for health care staff.
Objective: This study aims to evaluate the effectiveness of therapeutic exercise interventions with virtual reality (VR) training on balance and walking at the activity and participation levels in individuals with chronic stroke, compared with control groups receiving no treatment, conventional physical therapy, specific training, similar treatment, or identical treatment without VR.
PLoS One
July 2024
Health & Rehabilitation Sciences Department, Temple University, Philadelphia, Pennsylvania, United States of America.
Postural instability is a common symptom of vestibular dysfunction that impacts a person's day-to-day activities. Vestibular rehabilitation is effective in decreasing dizziness, visual symptoms and improving postural control through several mechanisms including sensory reweighting of the vestibular, visual and somatosensory systems. As part of the sensory reweighting mechanisms, vestibular activation exercises with headshaking influence vestibular-ocular reflex (VOR).
View Article and Find Full Text PDFStrabismus
September 2024
Department of Otorhinolaryngology, Koç University Medical Faculty, Istanbul, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!