Mirror symmetry plays a major role in determining the properties of matter and is of particular interest in condensed many-body systems undergoing symmetry breaking transitions under non-equilibrium conditions. Typically, in the aftermath of such transitions, one of the two possible broken symmetry states is emergent. However, synthetic systems and those formed under non-equilibrium conditions may exhibit metastable states comprising of both left (L) and right (R) handed symmetry. Here we explore the formation of chiral charge-density wave (CDW) domains after a laser quench in 1T-TaS with scanning tunneling microscopy. Typically, we observed transient domains of both chiralities, separated spatially from each other by domain walls with different structure. In addition, we observe transient density of states modulations consistent with interference of L and R-handed charge density waves within the surface monolayer. Theoretical modeling of the intertwined domain structures using a classical charged lattice gas model reproduces the experimental domain wall structures. The superposition (S) state cannot be understood classically within the correlated electron model but is found to be consistent with interferences of L and R-handed charge-density waves within domains, confined by surrounding domain walls, vividly revealing an interference of Fermi electrons with opposite chirality, which is not a result of inter-layer interference, but due to the interaction between electrons within a single layer, confined by domain wall boundaries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638312 | PMC |
http://dx.doi.org/10.1038/s41598-023-46659-y | DOI Listing |
Micromachines (Basel)
December 2024
High-Power Converter Systems (HLU), Technical University of Munich (TUM), 80333 Munich, Germany.
Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime.
View Article and Find Full Text PDFSci Rep
January 2025
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France.
The thermoelectric properties of hybrid systems based on a single-level quantum dot coupled to a normal-metal/half-metallic lead and attached to a topological superconductor wire are investigated. The topological superconductor wire is modeled by a spinless p-wave superconductor which hosts both a Majorana bound state at its extremity and above gap quasiparticle excitations. The main interest of our investigation is to study the interplay of sub-gap and single-particle tunneling processes and their contributions to the thermoelectric response of the considered system.
View Article and Find Full Text PDFEcol Lett
January 2025
UMR CNRS 7058 « Ecologie et Dynamique Des Systèmes Anthropisés » (EDYSAN), Université de Picardie Jules Verne, Amiens Cedex, France.
Previous studies have demonstrated legacy effects of current species distributions to past environmental conditions, but the temporal extent of such time lag dynamics remains unknown. Here, we have developed a non-equilibrium Species Distribution Modelling (SDM) approach quantifying the temporal extent that must be taken into account to capture 95% of the effect that a given time series of past environmental conditions has on the current distribution of a species. We applied this approach on the distribution of 92 European forest birds in response to past trajectories of change in forest cover and climate.
View Article and Find Full Text PDFChaos
January 2025
Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia.
We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
One of the hypothesized functions of biomolecular condensates is to act as chemical reactors, where chemical reactions can be modulated, i.e., accelerated or slowed down, while substrate molecules enter and products exit from the condensate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!