Eutrophication is accelerating the recent expansion of oxygen-depleted coastal marine environments. Several bolivinid foraminifera are abundant in these oxygen-depleted settings, and take up nitrate through the pores in their shells for denitrification. This makes their pore density a possible nitrate proxy. This study documents three aspects related to the porosity of bolivinids. 1. A new automated image analysis technique to determine the number of pores in bolivinids is tested. 2. The pore patterns of Bolivina spissa from five different ocean settings are analysed. The relationship between porosity, pore density and mean pore size significantly differs between the studied locations. Their porosity is mainly controlled by the size of the pores at the Gulf of Guayaquil (Peru), but by the number of pores at other studied locations. This might be related to the presence of a different cryptic Bolivina species in the Gulf of Guayaquil. 3. The pore densities of closely related bolivinids in core-top samples are calibrated as a bottom-water nitrate proxy. Bolivina spissa and Bolivina subadvena showed the same correlation between pore density and bottom-water nitrate concentrations, while the pore density of Bolivina argentea and Bolivina subadvena accumeata is much higher.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638366PMC
http://dx.doi.org/10.1038/s41598-023-46605-yDOI Listing

Publication Analysis

Top Keywords

pore density
16
automated image
8
pore
8
pore patterns
8
closely bolivinids
8
nitrate proxy
8
number pores
8
bolivina spissa
8
studied locations
8
gulf guayaquil
8

Similar Publications

We developed a unique water droplet templating method to fabricate polymer films with three-dimensionally ordered porous structures. This technique is based on a polymer/solvent/HO ternary system, and the key is to choose a volatile and hydrophobic solvent that is slightly miscible with HO. With the fast evaporation of the solvent, water droplets separate from the casting solution and condense from the air to act as pore templates inside the film and on the surface, respectively.

View Article and Find Full Text PDF

The shift from outcrossing to predominantly selfing is one of the most common transitions in plant evolution. This evolutionary shift has received considerable attention from biologists; however, this work has almost exclusively been focused on animal-pollinated systems. Despite the seminal ecological and economic importance of wind-pollinated species, the mechanisms controlling the degree of outcrossing in wind-pollinated taxa remain poorly understood.

View Article and Find Full Text PDF

Pore formation mechanism and size regulation study of atmospheric dried cellulose nanofiber aerogel templated by emulsions.

Int J Biol Macromol

January 2025

College of Textile Science & Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:

Atmospheric pressure drying (APD) method holds great promise in the large-scale production of aerogels without specialized equipment and critical conditions. However, atmospheric-dried cellulose- based aerogels are challenged by the collapse of the pore walls induced by the capillary force that arises during solvent evaporation. This study prepared an atmospheric dried cellulose nanofiber (CNF) aerogel with a low shrinkage rate (17.

View Article and Find Full Text PDF

Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs.

ACS Sens

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.

View Article and Find Full Text PDF

Background: Intradermal injection of CPM-HA20G, a low-viscoelasticity hyaluronic acid (HA) dermal filler with glycerol, has been shown to be effective for facial rejuvenation in Caucasians, but research in Asians is limited.

Aims: This study aimed to evaluate the effectiveness and safety of CPM-HA20G in enhancing facial skin quality in Korean women using a protocol developed by local aesthetic experts.

Patients/methods: In this 24-week prospective, single-arm, open-label study, 20 women received CPM-HA20G injections in the immediate subdermal layer on the anterior cheek (1 mL per side; total 2 mL) in three sessions every 4 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!