The combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSb (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSb endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSb thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSb was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m h. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638324 | PMC |
http://dx.doi.org/10.1038/s41467-023-42839-6 | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Perovskite solar cells (PSCs) are regarded as extremely efficient and have significant potential for upcoming photovoltaic technologies due to their excellent optoelectronic properties. However, a few obstacles, which include the instability and high costs of production of lead-based PSCs, hinder their commercialization. In this study, the performance of a solar cell with a configuration of FTO/CdS/BaZrS/HTL/Ir was optimized by varying the thickness of the perovskite layer, the hole transport layer, the temperature, the electron transport layer (ETL)'s defect density, the absorber defect density, the energy band, and the work function for back contact.
View Article and Find Full Text PDFMolecules
January 2025
Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
Perovskite solar cell (PSC) technology holds great promise with continuously improving power conversion efficiency; however, the use of metal electrodes hinders its commercialization and the development of tandem designs. Although single-walled carbon nanotubes (SWCNTs), as one-dimensional materials, have the potential to replace metal electrodes in PSCs, their poor conductivity still limits their application. In this study, the near-infrared (NIR)-absorbing anionic heptamethine cyanine dye-doped SWCNTs functioned in a dual role as an efficient charge-selective layer and electrode in PSCs.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Escuela de Ingeniería Pesquera, Universidad Nacional Jorge Basadre Grohmann, Tacna 23004, Peru.
The Peruvian grunt is one of the most appreciated fish in Peruvian national markets. However, its reduced and irregular fishery is a paradigm of illegal, unreported, and unregulated fishing (IUU) in the Peruvian-Chilean coastal region. An important technological advancement has been achieved in the last decade in capture, management, nutrition, and broodstock maintenance to boost pilot experiences on the aquaculture of this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!