Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cheese presents extensive variability in physical, chemical, and sensory characteristics according to the variety of processing methods and conditions used to create it. Relationships between the many characteristics of cheeses are known for single cheese types or by comparing a few of them, but not for a large number of cheese types. This case study used the properties recorded on 1,050 different cheeses from 107 producers grouped into 37 categories to analyze and quantify the interrelationships among the chemical and physical properties of many cheese types. The 15 cheese traits considered were ripening length, weight, firmness, adhesiveness, 6 different chemical characteristics, and 5 different color traits. As the 105 correlations between the 15 cheese traits were highly variable, a multivariate analysis was carried out. Four latent explanatory factors were extracted, representing 86% of the covariance matrix: the first factor (38% of covariance) was named Solids because it is mainly linked positively to fat, protein, water-soluble nitrogen, ash, firmness, adhesiveness, and ripening length, and negatively to moisture and lightness; the second factor (24%) was named Hue because it is linked positively to redness/blueness, yellowness/greenness, and chroma, and negatively to hue; the third factor (17%) was named Size because it is linked positively to weight, ripening length, firmness, and protein; and the fourth factor (7%) was named Basicity because it is linked positively to pH. The 37 cheese categories were grouped into 8 clusters and described using the latent factors: the Grana Padano cluster (characterized mainly by high Size scores); hard mountain cheeses (mainly high Solids scores); very soft cheeses (low Solids scores); blue cheeses (high Basicity scores), yellowish cheeses (high Hue scores), and 3 other clusters (soft cheeses, pasta filata and treated rind, and firm mountain cheeses) according to specific combinations of intermediate latent factors and cheese traits. In this case study, the high variability and interdependence of 15 major cheese traits can be substantially explained by only 4 latent factors, allowing us to identify and characterize 8 cheese type clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2023-23538 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!