Review of intermediate-scale field tests in support of disposal of waste forms.

Chemosphere

Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, WA, 99354, USA.

Published: January 2024

Nuclear waste has been generated from commercial nuclear reactors and from past nuclear weapons production activities. The safe disposal of this waste generally is planned to involve emplacement of packaged spent nuclear fuel (SNF) into the subsurface or reprocessing the used nuclear fuel and producing a sparingly soluble mineral or glass. The high-level waste form(s) would then be packaged and sent to a geologic repository. High-level waste (HLW) is expected to be sent for deep geological disposal while the low-level waste (LLW) is to be stored in near-surface facilities. In order to design and manage a secure disposal site, the LLW and HLW waste forms must limit the release of radioactive materials to the surrounding environment for very long time periods. This stability is dependent on the waste form itself as well as the physical and chemical characteristics imposed by the surrounding engineered systems and geology. When studying the chemical durability of the waste form in a laboratory setting, it is not possible to capture all of the complex and coupled processes that the waste form would be subjected to in the disposal system. Intermediate-scale tests can improve understanding and close knowledge gaps that may arise when applying laboratory experiments to a larger scale. The present paper gives an overview of the literature available on the interactions of waste forms and the surrounding environment (engineered barriers and geological materials), as well as suggestions on overcoming existing uncertainties that may aid in more robust performance assessment models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140625DOI Listing

Publication Analysis

Top Keywords

waste forms
16
waste form
12
waste
11
disposal waste
8
nuclear fuel
8
high-level waste
8
surrounding environment
8
disposal
5
nuclear
5
review intermediate-scale
4

Similar Publications

Migration and risk assessment of heavy metals from swine manure in an organic fertilizer - soil - ryegrass - rex rabbit system: Based on field trials.

Sci Total Environ

January 2025

Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, PR China. Electronic address:

Organic fertilizers were produced through maggot-composting (MC) and natural composting (NC) using swine manure, and the migration, contamination, and health risks of heavy metals (Zn, Cu, Cd, Cr, Pb) were evaluated within a fertilizer - soil - ryegrass - Rex rabbit system. After 70 days of treatment, heavy metals were concentrated by 43.23 % to 100 % in MC and 52.

View Article and Find Full Text PDF

The presence of microplastics (MPs) in aquatic ecosystem has become a pressing global concern. MPs pose a significant threat to aquatic ecosystems, with devastating consequences for both aquatic life and human health. Notably, freshwater ecosystems are particularly vulnerable to MPs pollution.

View Article and Find Full Text PDF

Study of hydrophobic cemented paste backfill (H-CPB) to prevent sulphate attack.

Heliyon

November 2024

Department of Mining Engineering, Faculty of Engineering, Hadimkoy Campus, Istanbul University - Cerrahpasa, 34500, Istanbul, Turkiye.

One of the challenges encountered in mining is acid mine drainage (AMD) in sulphurous ores in response to rainfall and groundwater. CPB one of the most prevalent waste management systems addresses this issue today. Nevertheless, in the long term, the concretion in CPB may become ineffective because of external factors, such as groundwater and rainfall.

View Article and Find Full Text PDF

Design of Double Strains in Triboelectric Nanogenerators toward Improving Human Behavior Monitoring.

Langmuir

January 2025

Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, School of Biology, Food and Environment, Hefei University, Hefei City 230601 China.

Triboelectric nanogenerators (TENGs) offer a convenient means to convert mechanical energy from human movement into electricity, exhibiting the application prospects in human behavior monitoring. Nevertheless, the present methods to improve the device monitoring effect are limited to the design of a triboelectric material level (control of electron gain and loss ability). As compared with reported work, we improve the monitoring effect of TENG-based tactile sensors by optimizing the structure of the electrode/triboelectric material interface by means of a multiple strains mechanism.

View Article and Find Full Text PDF

Affordable and eco-friendly green spectrofluorometric (FL) methods can enhance the safety and cost-effectiveness of quality assurance and control in ascorbic acid (ASA) formulations. However, most current techniques for ASA analysis have faced challenges like complexity, delayed response times, low throughput, time-consuming procedures, and requirements for expensive equipment and hazardous chemicals for analyte modification. The study is aimed at producing natural carbon quantum dots (NACQDs) from pumpkin seed peels (PSPs), a natural waste material, using a rapid microwave-assisted method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!