Perchlorate, a widespread environmental contaminant originating from various industrial applications, agricultural practices, and natural sources, poses potential risks to ecosystems and human health. While previous studies have highlighted its influence on the thyroid endocrine system and its impact on gonadal maturation, reproduction, and sex hormone synthesis, the specific interplay between thyroid and steroid hormones, in this context, remains largely unexplored. Therefore, this study was undertaken to investigate the adverse effects and underlying mechanisms triggered by exposure to sodium perchlorate (SP) on reproductive endocrine activity in zebrafish. For 21 d, the fish were exposed to test SP concentrations (0, 3, 30, 300 mg/L), which were determined based on the exposure concentrations that induced various toxic effects in the fish, considering naturally occurring concentrations. Exposure to SP, except at 3 mg/L in males, significantly decreased the production of thyroid hormone (TH) in both female and male zebrafish. Moreover, gonadal steroid levels were markedly reduced in both sexes. The expression of hepatic vitellogenin (VTG) mRNA in female zebrafish was significantly decreased, whereas aromatase activity in male zebrafish was significantly elevated in the SP exposure groups. The reduced levels of THs and gonadal steroid hormones were strongly correlated. Abnormal responses to SP exposure led to reduced reproductive success in the 300 mg/L SP exposure group. These findings indicate that prolonged and continuous exposure to a specific concentration of SP may lead to long-term reproductive problems in zebrafish, primarily through hormonal imbalances and suppression of hepatic VTG mRNA expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140662DOI Listing

Publication Analysis

Top Keywords

sodium perchlorate
8
steroid hormones
8
male zebrafish
8
gonadal steroid
8
vtg mrna
8
exposure
7
zebrafish
6
thyroid-gonadal hormonal
4
hormonal interplay
4
interplay zebrafish
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!