A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro degradation of fibrous bilayer poly-L-lactic acid scaffolds. | LitMetric

In vitro degradation of fibrous bilayer poly-L-lactic acid scaffolds.

J Biomech

Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA. Electronic address:

Published: December 2023

Polymer degradation and mechanical properties are of paramount importance in tissue engineering. The degradation rate of polymeric scaffolds is influenced by several important material and environmental factors. In particular, the mechanical support provided by the scaffold to the surrounding tissue during tissue regeneration is critical for that it directly impacts the cell behavior through mechanical signals sensed by mechanoreceptors on the cell surface. Consequently, the principal objective of the present study was to investigate the degradation behavior of electrospun poly-L-lactic acid (PLLA) bilayer microfibrous scaffolds in pH-neutral medium. Changes in the morphology, molecular weight, crystallinity, mass loss, and thermomechanical properties of the scaffolds over an extended period were studied by scanning electron microscopy, differential scanning calorimetry, gel permeation chromatography, and tensile testing. An interplay between chain scission and orderly chain rearrangement in the polymer scaffold commenced during degradation, leading to the decrease of the molecular weight and stiffness, a constant mass loss, and an increase in crystallinity, tensile strength, and glass transition temperature, with virtually constant yield strength and melting temperature. The unchanged structure morphology and adequate matrix stiffness after prolonged degradation illuminated the potential of the bilayer PLLA scaffolds for tissue engineering and drug delivery applications. Nonetheless, modifications to the scaffold structure or surface may be required to accordingly tune the degradation rate in these applications. The experimental methodology introduced in this study can be extended to potentially investigate material degradation in other fields, such as agriculture, packaging, and disposable products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2023.111823DOI Listing

Publication Analysis

Top Keywords

poly-l-lactic acid
8
tissue engineering
8
degradation rate
8
molecular weight
8
mass loss
8
degradation
7
scaffolds
5
vitro degradation
4
degradation fibrous
4
fibrous bilayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!