Effect of tree height and spraying methods on Diaphorina citri kuwayama endosymbionts in the context of Huanglongbing disease management in citrus orchards.

Pest Manag Sci

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Published: March 2024

Background: Huanglongbing (HLB) (caused by Candidatus Liberibacter asiaticus) is the most damaging disease of citrus around the world. This study investigated the effects of citrus tree height on Diaphorina citri Kuwayama mortality, endosymbiont responses, and HLB distribution.

Results: The results reveal that the age of citrus trees plays a significant role in psyllid mortality. Interestingly, the cumulative mean mortality (%) of psyllids over the seven-day observation period was higher (31.50±0.03) when four-year-old (501A1, 502A2, 501A3) citrus trees were sprayed with a US-SMART mechanical sprayer. In contrast, the psyllids mortality was 0.09±0.23 for the 13-year-old citrus trees (104A2, 104A3, 104C1) sprayed with a US-SMART mechanical sprayer and 9.10±0.05 for 13-year-old (502A2, 502B2, 502D1) citrus trees sprayed with a fixed US-SMART mechanical sprayer. Our findings also revealed that psyllids from both four- and 13-year-old citrus trees carried Candidatus Carsonella ruddii species and Wolbachia, the primary and secondary endosymbionts, respectively. Surprisingly, infection rates of these endosymbionts remained consistent across different age groups, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, our study highlights the significance of tree height as a proxy for tree age in influencing HLB occurrence. Specifically, four-year-old citrus trees subjected to the US-SMART mechanical sprayer for citrus psyllid control demonstrated effective disease management compared to 13-year-old (104A2, 104A3, 104C1) citrus trees sprayed with US-SMART mechanical sprayers. Additionally, the investigation explored the impact of tree height on HLB distribution. In four-year-old trees, no significant correlation between HLB disease and tree height was observed, potentially due to effective spray coverage with US-SMART mechanical sprayer. However, in 13-year-old (104A2, 104A3, 104C1) citrus tree sprayed with US-SMART mechanical sprayer, a positive correlation between tree height and HLB disease was evident.

Conclusion: This research provides valuable insights into the complex interaction between citrus tree age, psyllid endosymbionts responses, and HLB distribution. These results emphasize effective HLB management strategies, especially in orchards with diverse tree age populations, ultimately contributing to the long-term sustainability of citrus cultivation. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.7880DOI Listing

Publication Analysis

Top Keywords

citrus trees
28
tree height
24
us-smart mechanical
24
mechanical sprayer
24
sprayed us-smart
16
citrus
14
citrus tree
12
trees sprayed
12
104a2 104a3
12
104a3 104c1
12

Similar Publications

The citrus red mite (CRM), Panonychus citri (McGregor) (Acari: Tetranychidae), a worldwide pest chiefly infesting Citrus plants, has spread from Southern China to Northern China. Little information is known about the population performance of CRM on the plants except for citrus trees and pear trees. In order to evaluate the extent of damage might caused by CRM to the fruit trees cultivated in Northern China, the performance of CRM on four Rosaceae species, including three main fruit tree species (pear-Pyrus pyrifolia Nakai cv.

View Article and Find Full Text PDF

The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives.

View Article and Find Full Text PDF

The species complex (FLSC) currently comprises 11 phylogenetic species, including accepted names such as , , and , which have mostly been reported in association with citrus and coffee. Many varieties were documented by Wollenweber & Reinking (1935), which is indicative of a wider diversity of species within this group. The lack of type material in some cases, especially for the older names, means that definition by molecular phylogeny is very difficult.

View Article and Find Full Text PDF

Molecular data should be combined with morphological data to enhance the reliability of phylogenetic and diagnostic studies on nematodes. In this study, the citrus nematode collected from citrus orchards in different localities in Fars province, southern Iran, was characterized using the partial sequencing of ITS rDNA, D2-D3 of 28S rDNA and COI mtDNA genes. We also morphometrically characterized the second-stage juveniles (J2) and male specimens.

View Article and Find Full Text PDF

Genetic and physiological characteristics of edited citrus and their impact on HLB tolerance.

Front Genome Ed

December 2024

Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States.

Article Synopsis
  • Huanglongbing (HLB) disease, triggered by the bacterium Liberibacter asiaticus, poses a serious threat to citrus production with no existing cure, making the development of resistant cultivars essential.
  • Researchers focused on the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family, specifically modifying NPR1 and NPR3 genes in sweet orange trees to improve HLB resistance.
  • The genome-edited sweet orange varieties showed enhanced vigor compared to wild-type trees under greenhouse conditions, suggesting that targeted gene editing can help in developing HLB-tolerant citrus plants, although further field tests are required to confirm these results.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!