Introduction: During mechanical ventilation, cyclic recruitment and derecruitment (R/D) of alveoli result in focal points of heterogeneous stress throughout the lung. In the acutely injured lung, the rates at which alveoli can be recruited or derecruited may also be altered, requiring longer times at higher pressure levels to be recruited during inspiration, but shorter times at lower pressure levels to minimize collapse during exhalation. In this study, we used a computational model to simulate the effects of airway pressure release ventilation (APRV) on acinar recruitment, with varying inspiratory pressure levels and durations of exhalation.
Materials And Methods: The computational model consisted of a ventilator pressure source, a distensible breathing circuit, an endotracheal tube, and a porcine lung consisting of recruited and derecruited zones, as well as a transitional zone capable of intratidal R/D. Lung injury was simulated by modifying each acinus with an inflation-dependent surface tension. APRV was simulated for an inhalation duration (Thigh) of 4.0 seconds, inspiratory pressures (Phigh) of 28 and 40 cmH2O, and exhalation durations (Tlow) ranging from 0.2 to 1.5 seconds.
Results: Both sustained acinar recruitment and intratidal R/D within the subtree were consistently higher for Phigh of 40 cmH2O vs. 28 cmH2O, regardless of Tlow. Increasing Tlow was associated with decreasing sustained acinar recruitment, but increasing intratidal R/D, within the subtree. Increasing Tlow was associated with decreasing elastance of both the total respiratory system and transitional subtree of the model.
Conclusions: Our computational model demonstrates the confounding effects of cyclic R/D, sustained recruitment, and parenchymal strain stiffening on estimates of total lung elastance during APRV. Increasing inspiratory pressures leads to not only more sustained recruitment of unstable acini but also more intratidal R/D. Our model indicates that higher inspiratory pressures should be used in conjunction with shorter exhalation times, to avoid increasing intratidal R/D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/milmed/usad059 | DOI Listing |
Mil Med
November 2023
Department of Anesthesia, University of Iowa, Iowa City, IA 52242, USA.
Introduction: During mechanical ventilation, cyclic recruitment and derecruitment (R/D) of alveoli result in focal points of heterogeneous stress throughout the lung. In the acutely injured lung, the rates at which alveoli can be recruited or derecruited may also be altered, requiring longer times at higher pressure levels to be recruited during inspiration, but shorter times at lower pressure levels to minimize collapse during exhalation. In this study, we used a computational model to simulate the effects of airway pressure release ventilation (APRV) on acinar recruitment, with varying inspiratory pressure levels and durations of exhalation.
View Article and Find Full Text PDFAnesth Analg
January 2018
From the Department of Anaesthesia and Intensive Care, University of Foggia, Foggia, Italy.
Background: In the 2014 PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure (PROVHILO) trial, intraoperative low tidal volume ventilation with high positive end-expiratory pressure (PEEP = 12 cm H2O) and lung recruitment maneuvers did not decrease postoperative pulmonary complications when compared to low PEEP (0-2 cm H2O) approach without recruitment breaths. However, effects of intraoperative PEEP on lung compliance remain poorly understood. We hypothesized that higher PEEP leads to a dominance of intratidal overdistension, whereas lower PEEP results in intratidal recruitment/derecruitment (R/D).
View Article and Find Full Text PDFCrit Care
January 2012
Department of Anaesthesiology, Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
Introduction: Cyclic alveolar recruitment/derecruitment (R/D) is an important mechanism of ventilator-associated lung injury. In experimental models this process can be measured with high temporal resolution by detection of respiratory-dependent oscillations of the paO2 (ΔpaO2). A previous study showed that end-expiratory collapse can be prevented by an increased respiratory rate in saline-lavaged rabbits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!