The spread of drug-resistant strains of tuberculosis has hampered efforts to control the disease worldwide. The cell wall envelope is dynamic, with complex features that protect it from the host immunological response. As a result, the bacterial cell wall components represent a potential target for drug discovery. Protein-protein interaction networks (PPIN) are critical for understanding disease conditions and identifying precise therapeutic targets. We used a rational theoretical approach by constructing a PPIN with the proteins involved in cell wall biosynthesis. The PPIN was constructed through the STRING database and embB was identified as a key protein by using four topological measures, betweenness, closeness, degree, and eigenvector, in the CytoNCA tool in Cytoscape. The 'Drug repurposing' approach was employed to find suitable inhibitors against embB. We used the Schrödinger suites for molecular docking, molecular dynamics simulation, and binding free energy calculations to validate the binding of protein with the ligand. FDA-approved drugs from the ZINC database and DrugBank were screened against embB (PDB ID: 7BVF) using high-throughput virtual screening, standard precision, and extra precision docking. The drugs were screened based on the XP docking score of the standard drug ethambutol. Accordingly, from the top five hits, azilsartan and dihydroergotamine were selected based on the binding free energy values and were further subjected to Molecular Dynamics Simulation studies for 100 ns. Our study confirms that Azilsartan and Dihydroergotamine form stable complexes with embB and can be used as potential lead molecules based on further and experimental validation.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2279699 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!