We conducted a systematic review of the literature reporting phenylephrine-induced changes in blood pressure, cardiac output, cerebral blood flow and cerebral tissue oxygen saturation as measured by near-infrared spectroscopy in humans. We used the proportion change of the group mean values reported by the original studies in our analysis. Phenylephrine elevates blood pressure whilst concurrently inducing a reduction in cardiac output. Furthermore, despite increasing cerebral blood flow, it decreases cerebral tissue oxygen saturation. The extent of phenylephrine's influence on cardiac output (r = -0.54 and p = 0.09 in awake humans; r = -0.55 and p = 0.007 in anaesthetised humans), cerebral blood flow (r = 0.65 and p = 0.002 in awake humans; r = 0.80 and p = 0.003 in anaesthetised humans) and cerebral tissue oxygen saturation (r = -0.72 and p = 0.03 in awake humans; r = -0.24 and p = 0.48 in anaesthetised humans) appears closely linked to the magnitude of phenylephrine-induced blood pressure changes. When comparing the effects of phenylephrine in awake and anaesthetised humans, we found no evidence of a significant difference in cardiac output, cerebral blood flow or cerebral tissue oxygen saturation. There was also no evidence of a significant difference in effect on systemic and cerebral circulations whether phenylephrine was given by bolus or infusion. We explore the underlying mechanisms driving the phenylephrine-induced cardiac output reduction, cerebral blood flow increase and cerebral tissue oxygen saturation decrease. Individualised treatment approaches, close monitoring and consideration of potential risks and benefits remain vital to the safe and effective use of phenylephrine in acute care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/anae.16172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!