Indium-111-labeled T101 antibody was injected subcutaneously (s.c.) into the web spaces between the toes of two patients with cutaneous T-cell lymphoma. Computer-assisted gamma scintigraphy was used to measure uptake in lymph nodes and clearance from injection sites. Antibodies passed rapidly and very efficiently from the feet to the inguinal-femoral and iliac lymph nodes after s.c. administration. Contrasting patterns of uptake were seen in patients with different lymph node histology, but additional experience will be required to test the possible correlation with degree of lymph node involvement. This technique provides an efficient, noninvasive method for imaging normal and abnormal lymphoid elements in regional lymph nodes, and it may prove useful in the evaluation of patients with lymphoma or other lymph node disorders.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lymph nodes
12
lymph node
12
patients lymphoma
8
indium-111-labeled t101
8
lymph
6
immunolymphoscintigraphy patients
4
lymphoma subcutaneous
4
subcutaneous injection
4
injection indium-111-labeled
4
t101 monoclonal
4

Similar Publications

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.

View Article and Find Full Text PDF

Robust CD8 T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8 T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription.

View Article and Find Full Text PDF

Background/objectives: The extracellular calcium-sensing receptor (CaSR) is a multifunctional receptor proposed as a possible drug target for inflammatory bowel disease. We showed previously that CaSR inhibition with NPS 2143, a negative allosteric modulator of the CaSR, somewhat ameliorated the symptoms of chemically induced severe colitis in mice. However, it was unclear whether the potential of CaSR inhibition to reduce colitis may have been overshadowed by the severity of the induced inflammation in our previous study.

View Article and Find Full Text PDF

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Evaluating the Diagnostic Efficacy of Using Pooled Samples for Chronic Wasting Disease Testing and Surveillance.

Pathogens

December 2024

Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.

Disease monitoring informs the opportunities for intervention by natural resource agencies tasked with managing chronic wasting disease (CWD) in wild cervids. However, allocating funds toward testing can reduce those available for education, outreach, and disease reduction. Implementation of more efficient testing strategies can help meet both an expanding need by resource managers and a burgeoning demand from the hunting public in North America.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!