The adsorption energy of a molecule onto the surface of a material underpins a wide array of applications, spanning heterogeneous catalysis, gas storage, and many more. It is the key quantity where experimental measurements and theoretical calculations meet, with agreement being necessary for reliable predictions of chemical reaction rates and mechanisms. The prototypical molecule-surface system is CO adsorbed on MgO, but despite intense scrutiny from theory and experiment, there is still no consensus on its adsorption energy. In particular, the large cost of accurate many-body methods makes reaching converged theoretical estimates difficult, generating a wide range of values. In this work, we address this challenge, leveraging the latest advances in diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] to obtain accurate predictions for CO on MgO. These reliable theoretical estimates allow us to evaluate the inconsistencies in published temperature-programed desorption experiments, revealing that they arise from variations in employed pre-exponential factors. Utilizing this insight, we derive new experimental estimates of the (electronic) adsorption energy with a (more) precise pre-exponential factor. As a culmination of all of this effort, we are able to reach a consensus between multiple theoretical calculations and multiple experiments for the first time. In addition, we show that our recently developed cluster-based CCSD(T) approach provides a low-cost route toward achieving accurate adsorption energies. This sets the stage for affordable and reliable theoretical predictions of chemical reactions on surfaces to guide the realization of new catalysts and gas storage materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683001 | PMC |
http://dx.doi.org/10.1021/jacs.3c09616 | DOI Listing |
PLoS One
January 2025
Grupo de Investigación Materiales con Impacto (Mat&mpac) Universidad de Medellín, Medellín, Colombia.
In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
The shuttling effect of polysulfides in lithium-sulfur batteries seriously affects their performance. Herein, NiFeO derived from natural hematite is coated on a PP separator (NFO@PP), which can effectively block the shuttling of polysulfides and has strong adsorption and catalytic capabilities. The NFO@PP cell has an initial capacity of up to 1258.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003-9303, USA.
A comprehensive set of single-component and binary isotherms were collected for ethanol/water adsorption into the siliceous forms of 185 known zeolites using grand-canonical Monte Carlo simulations. Using these data, a systematic analysis of ideal/real adsorbed-solution theory (IAST/RAST) was conducted and activity coefficients were derived for ethanol/water mixtures adsorbed in different zeolites based on RAST. It was found that activity coefficients of ethanol are close to unity while activity coefficients of water are larger in most zeolites, indicating a positive excess free energy of the mixture.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Potassium metal batteries are emerging as a promising high-energy density storage solution, valued for their cost-effectiveness and low electrochemical potential. However, understanding the role of potassiphilic sites in nucleation and growth remains challenging. This study introduces a single-atom iron, coordinated by nitrogen atoms in a 3D hierarchical porous carbon fiber (Fe─N-PCF), which enhances ion and electron transport, improves nucleation and diffusion kinetics, and reduces energy barriers for potassium deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!