A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MIA3 promotes the degradation of GSH (glutathione) by binding to CHAC1, thereby promoting the progression of hepatocellular carcinoma. | LitMetric

AI Article Synopsis

  • MIA3/TANGO1 is critical for cancer development, particularly in hepatocellular carcinoma (HCC), where MIA3 is found to be overexpressed in tumor tissues compared to normal ones.
  • Techniques like qRT-PCR and western blotting confirmed high MIA3 levels in HCC tissues, and functional assays showed that manipulating MIA3 expression affected cell proliferation, migration, and apoptosis in hepatoma cells.
  • MIA3 enhances the growth and spread of HCC by interacting with the protein CHAC1 to promote the degradation of glutathione (GSH), illustrating a significant pathway in cancer progression.

Article Abstract

MIA3 (melanoma inhibitory active protein 3)/TANGO1 (Golgi transporter component protein) plays an important role in the initiation, development, and metabolism of cancer. We aimed to explore the role and underlying molecular mechanisms of MIA3/TANGO1 in the growth and migration of hepatoma cells. According to the analysis of The Cancer Genome Atlas (TCGA) database, MIA3 is expressed at higher levels in hepatocellular carcinoma (HCC) tissues than in normal tissues. Real-time quantitative polymerase chain reaction (qRT-PCR), immunohistochemistry, and western blotting were used to detect mRNA and protein expression in HCC tissues and cells. The in vitro function of MIA3 in HCC cells was evaluated using Cell Counting Kit-8 (CCK-8), colony formation, cell migration and invasion, and flow cytometry assays. Hep-G2 cells with MIA3 overexpression were subjected to RNA-seq, and the downstream target gene CHAC1 (glutathione-specific γ-glutamyl cyclotransferase 1) was selected according to the results of the volcano map of gene enrichment. The relationship between MIA3 and CHAC1 was revealed by coimmunoprecipitation and confocal microscopy. MIA3 expression was upregulated in HCC organizations and HCC samples in the TCGA dataset. Knocking out MIA3 inhibited the proliferation, migration, and invasion of Hep-G2 cells and promoted the apoptosis of Hep-G2 cells. Overexpression of MIA3 in Huh7 cells promoted the proliferation, migration, and invasion and suppressed the apoptosis of Huh7 cells. Overexpression of MIA3 promoted the expression of CHAC1 and the degradation of glutathione (GSH), thereby promoting the growth and metastasis of HCC cells. Knocking out MIA3 inhibited the expression of CHAC1 and slowed the degradation of glutathione, thereby inhibiting the growth and metastasis of HCC cells. MIA3 further promotes the growth, metastasis, and invasion of hepatoma cells by binding to the CHAC1 protein and promoting GSH degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455670PMC
http://dx.doi.org/10.1007/s11010-023-04850-9DOI Listing

Publication Analysis

Top Keywords

mia3
12
hcc cells
12
migration invasion
12
hep-g2 cells
12
growth metastasis
12
cells
11
mia3 promotes
8
binding chac1
8
hepatocellular carcinoma
8
hepatoma cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!