Comparative analysis of physiological traits and gene expression patterns in nitrogen deficiency among barley cultivars.

J Genet Eng Biotechnol

Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.

Published: November 2023

Background: Nitrogen is one of the most important mineral nutrients for plants and is absorbed by the root system mainly in the inorganic form (NH and NO). Plants absorb nitrogen as a food source for growth, biomass production, and development. Nitrogen is mainly absorbed as nitrate, which is the most common source of nitrogen available to higher plants. One of the unique features of nitrate transport is that NO is both a substrate for transport and an inducer of NO transport systems in genes and at physiological levels.

Methods: In the present study, morphological and physiological traits (chlorophyll a/b, total chlorophyll, and carotenoid, antioxidant enzymes, and protein content), correlation between traits and gene expression, and principle component analysis of traits among five barley cultivars were measured in response to nitrogen deficiency (ND). The starved plants were transferred to a nutrient solution containing 0.2 mM and 2 mM NO up to 7 and 14 days after ND application and non-stressed conditions, respectively.

Results: Gene expression analysis revealed that the 10 HvNRT2 genes were induced in the leaf and root tissues at 7 and 14 days after ND treatments in five barley cultivars. Expression of NRT2 genes by relative quantitative qRT-PCR analysis for 10 HvNRT2 genes were determined. Based on the gene expression, HvNRT2.1, HvNRT2.2, and HvNRT2.4 were strongly induced by NO3, peaking at 7 and 14 days after ND treatment. In contrast, the HvNRT2.4 showed only moderate induction in both leaves and roots. From our results, the Reyhan cultivar showed a significant increase in root fresh weight (RFW), protein content, and antioxidant enzyme activity in roots at 7 and 14 days after ND treatment as compared to the non-stressed condition. A highly positive correlation was observed between root catalase (CATr) and HvNRT2.2/2.5/2.6 leaves.

Conclusion: The expression of HvNRT2.4 is increased during long-term nitrogen starvation, while the expression of HvNRT2.1 and HvNRT2.2 are transiently increased by ND. Based on physiological and morphological traits and molecular mechanisms, the Reyhan is considered a tolerant cultivar under ND condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638351PMC
http://dx.doi.org/10.1186/s43141-023-00567-wDOI Listing

Publication Analysis

Top Keywords

gene expression
16
barley cultivars
12
physiological traits
8
traits gene
8
nitrogen deficiency
8
protein content
8
hvnrt2 genes
8
expression hvnrt21
8
hvnrt21 hvnrt22
8
expression
7

Similar Publications

To further evaluate the effects of lymphocyte immunotherapy (LIT) for the treatment of RPL patients this study aimed to utilize this type of treatment in RPL patients with positive antinuclear antibodies (ANA) in comparison to ANA-negative RPL women. To this aim, 84 ANA-positive, 114 ANA negative, and 50 healthy pregnant women were recruited. To examine the frequency of cells before and after LIT, flowcytometry technique was employed.

View Article and Find Full Text PDF

The cytokine interleukin-10 (IL-10) limits the immune response and promotes resolution of acute inflammation. Because of its immunosuppressive effects, IL-10 up-regulation is a common feature of tumor progression and metastasis. Recently, IL-10 regulation has been shown to depend on mitochondria and redox-sensitive signals.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.

Sci Adv

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.

Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.

View Article and Find Full Text PDF

Long-term, immunosuppression-free allograft survival has been induced in human and nonhuman primate (NHP) kidney recipients after nonmyeloablative conditioning and donor bone marrow transplantation (DBMT), resulting in transient mixed hematopoietic chimerism. However, the same strategy has consistently failed in NHP heart transplant recipients. Here, we investigated whether long-term heart allograft survival could be achieved by cotransplanting kidneys from the same donor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!