Autoimmune diseases, such as Multiple Sclerosis, are often modelled through the dynamics of T-cell interactions. However, the spatial aspect of such diseases, and how dynamics may result in spatially heterogeneous outcomes, is often overlooked. We consider the effects of diffusion and chemotaxis on T-cell regulatory dynamics using a three-species model of effector and regulator T-cell populations, along with a chemical signalling agent. While diffusion alone cannot lead to instability and spatial patterning, the inclusion of chemotaxis can result in multiple forms of instability that produce highly complicated spatiotemporal behaviour. The parameter regimes in which different instabilities occur are determined through linear stability analysis and the full dynamics is explored through numerical simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-023-02017-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!