Objective: The success of engineered tissues continues to be limited by time to vascularization and perfusion. Recently, we described a simple microsurgical approach, termed micropuncture (MP), which could be used to rapidly vascularize an adjacently placed scaffold from the recipient macrovasculature. Here we studied the long-term persistence of the MP-induced microvasculature.
Methods: Segmental 60 μm diameter MPs were created in the recipient rat femoral artery and vein followed by coverage with a simple Type 1 collagen scaffold. The recipient vasculature and scaffold were then wrapped en bloc with a silicone sheet to isolate intrinsic vascularization. Scaffolds were harvested at 28 days post-implantation for detailed analysis, including using a novel artificial intelligence (AI) approach.
Results: MP scaffolds demonstrated a sustained increase of vascular density compared to internal non-MP control scaffolds (p < 0.05) secondary to increases in both vessel diameters (p < 0.05) and branch counts (p < 0.05). MP scaffolds also demonstrated statistically significant increases in red blood cell (RBC) perfused lumens.
Conclusions: This study further highlights that the intrinsic MP-induced vasculature continues to persist long-term. Its combination of rapid and stable angiogenesis represents a novel surgical platform for engineered scaffold and graft perfusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842157 | PMC |
http://dx.doi.org/10.1111/micc.12835 | DOI Listing |
World J Stem Cells
December 2024
Department of Orthopedics, Children's Hospital of Fudan University & National Children's Medical Center, Shanghai 201102, China.
Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".
Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.
Extracell Vesicle
December 2024
Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK.
Extracellular vesicles (EVs) are promising therapeutic delivery vehicles, although their potential is limited by a lack of efficient engineering strategies to enhance loading and functional cargo delivery. Using an in-house bioinformatics analysis, we identified N-glycosylation as a putative EV-sorting feature. PTTG1IP (a small, N-glycosylated, single-spanning transmembrane protein) was found to be a suitable scaffold for EV loading of therapeutic cargoes, with loading dependent on its N-glycosylation at two arginine residues.
View Article and Find Full Text PDFJ Craniomaxillofac Surg
December 2024
Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Charite - Universitatsmedizin Berlin, Corporate Member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, And Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Germany. Electronic address:
Previous studies hint at possible differences in osteogenic, osteoimmunologic, and angiogenetic potential among primary human osteoblasts (HOBs) from different origins (iliac and alveolar bone) within the same patient. In this study, HOBs from the jaw and the fibula were investigated for the first time to gain further knowledge about the similarities and differences on the cellular morphological level. Patient-paired HOB cultures from the jaw and fibula of 14 patients (60.
View Article and Find Full Text PDFKorean J Med Educ
December 2024
Women & Children's Hospital, Adelaide, Australia.
Purpose: Surgical trainees are at high risk of burnout and poor wellbeing during their training. A range of workplace factors have been linked to poor wellbeing, including excessive work hours, lack of support networks, and training program demands. However, little is understood about the individual experiences of Australian trainees and their perceptions of the impact of the work environment on wellbeing.
View Article and Find Full Text PDFBone Joint Res
December 2024
Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!