The values of the surface potentials of two sides of films of polyvinylidene fluoride, and its copolymers with tetrafluoroethylene and hexafluoropropylene, were measured by the Kelvin probe method. The microstructures of the chains in the surfaces on these sides were evaluated by ATR IR spectroscopy. It was found that the observed surface potentials differed in the studied films. Simultaneously, it was observed from the IR spectroscopy data that the microstructures of the chains on both sides of the films also differed. It is concluded that the formation of the surface potential in (self-polarized) ferroelectric polymers is controlled by the microstructure of the surface layer. The reasons for the formation of a different microstructure on both sides of the films are suggested on the basis of the general regularities of structure formation in flexible-chain crystallizing polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648288PMC
http://dx.doi.org/10.3390/nano13212851DOI Listing

Publication Analysis

Top Keywords

sides films
12
self-polarized ferroelectric
8
surface potential
8
surface potentials
8
microstructures chains
8
films
5
surface
5
composition surface
4
surface microstructure
4
microstructure self-polarized
4

Similar Publications

High-Brightness Color-Tunable AC-Driven Quantum Dot Light-Emitting Diodes for Integrated Passive High-Electric-Field Contactless Detection.

ACS Appl Mater Interfaces

January 2025

Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.

This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.

View Article and Find Full Text PDF

The development of high-performance Sn-based perovskite photodetectors is presented with double-sided passivation using large alkylammonium interlayers of PEAI and BDAI₂. This dual passivation strategy, applied to the top and bottom of FASnI₃ films, effectively improves film quality by reducing defect density, enhancing carrier mobility, and minimizing non-radiative energy losses at the interfaces. At 720 nm, the photodetectors demonstrate a responsivity of 0.

View Article and Find Full Text PDF

High-Precision Printing Sandwich Flexible Transparent Silver Mesh for Tunable Electromagnetic Interference Shielding Visualization Windows.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing 210023, People's Republic of China.

Flexible transparent conductive films (FTCFs) with electromagnetic interference (EMI) shielding performance are increasingly crucial as visualization windows in optoelectronic devices due to their capabilities to block electromagnetic radiation (EMR) generated during operation. Metal mesh-based FTCFs have emerged as a promising representative in which EMI shielding effectiveness (SE) can be enhanced by increasing the line width, reducing the line spacing, or increasing mesh thickness. However, these conventional approaches decrease optical transmittance or increase material consumption, thus compromising the optical performance and economic viability.

View Article and Find Full Text PDF

Dewetting of thin polymer films reveals non-equilibrium conformational difference between substrate and air sides.

J Colloid Interface Sci

March 2025

School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; School of Chemical Engineering and Technology and Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300350, China. Electronic address:

The anomalous dynamics of thin polymer films, often attributed to geometrical confinement and interfacial interaction, have aroused considerable interest, particularly with regard to the inherent and processing-induced chain conformation changes. Here, the capillary peeling method is employed to obtain reattached thin polystyrene films with either the substrate or the air side beneath. Compared to traditional dewetting experiments solely conducted on the substrate side of as-cast films, the difference in dewetting behavior between the two sides of films is demonstrated, with the air side showing a faster dewetting velocity in the early stage and a larger apparent residual stress.

View Article and Find Full Text PDF

Purpose: In vivo dosimetry is a common requirement to validate dose accuracy/uniformity in total body irradiation (TBI). Several detectors can be used for in vivo dosimetry, including thermoluminescent dosimeters (TLDs), diodes, ion chambers, optically stimulated luminescent dosimeters (OSLDs), and film. TLDs are well established for use in vivo but required expertise and clinical system availability may make them impractical for multifractionated TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!