Ammonia (NH) is widely used in various fields, and it is also considered a promising carbon free energy carrier, due to its high hydrogen content. The nitrogen reduction reaction (NRR), which converts nitrogen into ammonia by using protons from water as the hydrogen source, is receiving a lot of attention, since effective process optimization would make it possible to overcome the Haber-Bosch method. In this study, we used a solution-based approach to obtain functionalized porous Ni foam substrates with a small amount of gold (<0.1 mg cm). We investigated several deposition conditions and obtained different morphologies. The electrochemical performance of various catalysts on the hydrogen evolution reaction (HER) and NRR has been characterized. The ammonia production yield was determined by chronoamperometry experiments at several potentials, and the results showed a maximum ammonia yield rate of 20 µg h mg and a Faradaic efficiency of 5.22%. This study demonstrates the potential of gold-based catalysts for sustainable ammonia production and highlights the importance of optimizing deposition conditions to improve the selectivity toward HER.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647533PMC
http://dx.doi.org/10.3390/nano13212850DOI Listing

Publication Analysis

Top Keywords

ultra-low loading
4
loading gold
4
gold nickel
4
nickel foam
4
foam nitrogen
4
nitrogen electrochemistry
4
electrochemistry ammonia
4
ammonia fields
4
fields considered
4
considered promising
4

Similar Publications

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Synthesis and antitumor activity of ultra-low molecular weight hyaluronic acid-decorated camptothecin conjugates.

Carbohydr Polym

March 2025

National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China. Electronic address:

Camptothecin (CPT) exhibits potent anticancer activity, but its clinical application is limited by poor solubility and severe side effects. Hyaluronic acid (HA) is gaining attention in drug delivery systems due to its excellent biocompatibility and tumor-targeting properties. In this study, we conjugated CPT to the reducing end of ultra-low molecular weight HA to create a series of HA-decorated CPT conjugates.

View Article and Find Full Text PDF

Atomic layer deposition of Pt nanoparticles grown onto 3D B-doped graphene as an efficient ultra-low Pt loading catalyst layer for PEMFC.

J Colloid Interface Sci

December 2024

Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:

Article Synopsis
  • Researchers developed a new catalyst layer using 3D porous B-doped graphene integrated with ultra-low platinum (Pt) for proton exchange membrane fuel cells (PEMFC), aiming to improve activity and durability.
  • The Pt/3D-PBG configuration achieved a maximum power density of 0.90 W/cm² while meeting the Department of Energy's 2025 targets, which is a significant breakthrough.
  • The integration of boron (B) dopants enhances both the deposition of Pt and its electronic interaction, resulting in better performance and stability of the fuel cell at lower amounts of platinum.
View Article and Find Full Text PDF

Capillary zone electrophoresis (CZE) is gaining attention in the field of single-cell proteomics for its ultra-low-flow and high-resolution separation abilities. Even more sample-limited yet rich in biological information are phosphoproteomics experiments, as the phosphoproteome composes only a fraction of the whole cellular proteome. Rapid analysis, high sensitivity, and maximization of sample utilization are paramount for single-cell analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Supported non-precious metal catalysts are cheaper but less effective than precious metal catalysts for oxidizing volatile organic compounds (VOCs).
  • Introducing a small amount of palladium and using a plasma preparation method significantly boosts the catalytic activity and creates more defects, like oxygen vacancies, in the catalyst structure.
  • The modified catalysts (Pd/CuMnCeO/SiO-P) show improved performance and stability in oxidizing n-hexane, highlighting the potential for using less precious metals in catalyst design.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!