While chimeric antigen receptor (CAR) T cell therapy has shown promising outcomes among patients with hematologic malignancies, it has also been associated with undesirable side-effects such as cytokine release syndrome (CRS). CRS is triggered by CAR T-cell-based activation of monocytes, which are stimulated via the CD40L-CD40R axis or via uptake of GM-CSF to secrete proinflammatory cytokines. Mouse models have been used to model CRS, but working with them is labor-intensive and they are not amenable to screening approaches. To overcome this challenge, we established two simple cell-based CRS in vitro models that entail the co-culturing of leukemic B cells with CD19-targeting CAR T cells and primary monocytes from the same donor. Upon antigen encounter, CAR T cells upregulated CD40L and released GM-CSF which in turn stimulated the monocytes to secrete IL-6. To endorse these models, we demonstrated that neutralizing antibodies or genetic disruption of the and/or loci in CAR T cells using CRISPR-Cas technology significantly reduced IL-6 secretion by bystander monocytes without affecting the cytolytic activity of the engineered lymphocytes in vitro. Overall, our cell-based models were able to recapitulate CRS in vitro, allowing us to validate mitigation strategies based on antibodies or genome editing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649043 | PMC |
http://dx.doi.org/10.3390/cells12212581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!