A great deal of effort has been recently devoted to the study of dielectric relaxation processes in ferroelectric nematic liquid crystals, yet their interpretation remains unclear. In this work, we present the results of broadband dielectric spectroscopy experiments of a prototypical ferroelectric nematogen in the frequency range 10 Hz-110 MHz at different electrode separations and under the application of DC bias fields. The results evidence a complex behavior in all phases due to the magnitude of polar correlations in these systems. The observed modes have been assigned to different relaxation mechanisms based on existing theoretical frameworks.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0173813DOI Listing

Publication Analysis

Top Keywords

ferroelectric nematic
8
nematic liquid
8
broadband dielectric
8
dielectric spectroscopy
8
collective non-collective
4
non-collective molecular
4
molecular dynamics
4
dynamics ferroelectric
4
liquid crystal
4
crystal studied
4

Similar Publications

Low field electrocaloric effect at isotropic-ferroelectric nematic phase transition.

Soft Matter

December 2024

Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA.

Electrocaloric effects (ECE) in solid state materials, such as ferroelectric ceramics and ferroelectric polymers, have a great impact in developing cooling systems. Herein, we describe the ECE of a newly synthesized ferroelectric nematic liquid crystal compound at the isotropic-ferroelectric nematic (I-N) phase transition. While the Joule heat completely suppressed the ECE in a DC field, in an AC field with < 1.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals present a compelling platform for exploring topological defects in polar fields, while their structural properties can be significantly altered by ionic doping. In this study, we demonstrate that doping the ferroelectric nematic material RM734 with cationic polymers enables the formation of polymeric micelles that connect pairs of half-integer topological defects. Polarizing optical microscopy reveals that these string defects exhibit butterfly textures, featured with a 2D polarization field divided by Néel-type kink walls into domains exhibiting either uniform polarization or negative splay and bend deformations.

View Article and Find Full Text PDF

Ferroelectric nematic liquid crystals are polar fluids characterized by microscopic orientational ordering and macroscopic spontaneous polarizations. Within these fluids, domain walls that separate regions of different polarizations are ubiquitous. We demonstrate that the π walls in films of the polar fluids consist of twin half-integer surface disclinations spaced horizontally, enclosing a subdomain where the polarization exhibits left- or right-handed π twists across the film.

View Article and Find Full Text PDF

The dynamics of swimming bacteria depend on the properties of their habitat media. Recently it is shown that the motion of swimming bacteria dispersed directly in a non-toxic water-based lyotropic chromonic liquid crystal can be controlled by the director field of the liquid crystal. Here, we investigate whether the macroscopic polar order of a ferroelectric nematic liquid crystal (N) can be recognized by bacteria B.

View Article and Find Full Text PDF

We show that stable, freely suspended liquid crystal films can be made from the ferroelectric nematic (N) phase and from the recently discovered polar, lamellar SmZ and SmA phases. The N films display two-dimensional, smectic-like parabolic focal conic textures comprising director/polarization bend that are a manifestation of the electrostatic suppression of director splay in the film plane. In the SmZ and SmA phases, the smectic layers orient preferentially normal to the film surfaces, a condition never found in typical thermotropic or lyotropic lamellar LC phases, with the SmZ films exhibiting focal-conic fan textures mimicking the appearance of typical smectics in glass cells when the layers are oriented normal to the plates, and the SmA films showing a texture of plaquettes of uniform in-plane orientation where both bend and splay are suppressed, separated by grain boundaries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!