Continuous wave cavity ringdown spectroscopy incorporating with an off-axis arrangement, white noise perturbation, and optical re-injection.

Rev Sci Instrum

Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

Published: November 2023

We present an ultra-sensitive continuous wave cavity ringdown spectroscopy (cw-CRDS) spectrometer to record high resolution spectra of reactive radicals and ions in a pulsed supersonic plasma. The spectrometer employs a home-made external cavity diode laser as the tunable light source, with its wavelength modulated by radio-frequency white noise. The ringdown cavity with a finesse of ∼105 is arranged with an off-axis alignment. The combination of the off-axis cavity and the white-noise perturbed laser yields quasi-continuum laser-cavity coupling without the need of mode matching. The cavity is further incorporated with an extra multi-pass cavity for optical re-injection of light reflected off the master cavity, which significantly increases the throughput power of the high-finesse cavity. A fast switchable semiconductor optical amplifier is used to modulate the cw laser beam to square wave pulses and to initialize timing controlled ringdown events, which are synchronized to the plasma pulses with an accuracy of ∼3 µs. The performance and potential of the cw-CRDS spectrometer are illustrated and discussed, based on the high resolution near-infrared spectroscopic detection of trace 13C13C radicals generated in a pulsed supersonic C2H2/Ar plasma with a pulse duration of ∼50 µs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0172162DOI Listing

Publication Analysis

Top Keywords

cavity
9
continuous wave
8
wave cavity
8
cavity ringdown
8
ringdown spectroscopy
8
white noise
8
optical re-injection
8
cw-crds spectrometer
8
high resolution
8
pulsed supersonic
8

Similar Publications

Purpose: Radiotherapy (RT)/cetuximab (C) demonstrated superiority over RT alone for locally advanced squamous head and neck cancer. We tested this in completely resected, intermediate-risk cancer.

Methods: Patients had squamous cell carcinoma of the head and neck (SCCHN) of the oral cavity, oropharynx, or larynx, with one or more risk factors warranting postoperative RT.

View Article and Find Full Text PDF

Purpose: To present a novel bended-needle drainage system in vitreous cavity lavage (VCL) for postoperative vitreous cavity hemorrhage (POVCH).

Methods: This retrospective case series include all patients with POVCH who received VCL with the bended-needle drainage system at ophthalmology department of Peking Union Medical College Hospital from January 2022 to May 2024. Patients adopted a supine position that allows preparation and draping.

View Article and Find Full Text PDF

Objective: This study aims to quantitatively compare the effects of standard needle irrigation (SNI), passive ultrasonic irrigation (PUI), EDDY, photon-initiated photoacoustic streaming (PIPS), and shock wave-enhanced emission photoacoustic streaming (SWEEPS) on the apical extrusion of irrigation solutions in teeth with severe canal curvature.

Materials And Methods: Seventy-five teeth with a single root and canal, and curvature angles ranging from 20° to 40°, were selected for this study. Root canal curvatures were measured from buccolingual and mesiodistal radiographs using ImageJ software (version 1.

View Article and Find Full Text PDF

Objectives: Information on the oral health of patients with anorexia nervosa remains not satisfactory. The aim of this systematic review is to evaluate oral health parameters in anorexic patients compared to healthy individuals. Furthermore, potential clinical implications for orthodontic treatment are discussed from an orthodontic perspective.

View Article and Find Full Text PDF

The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!