To date, rapid diagnostic methods based on the MPT64 antigen assay are increasingly utilized to differentiate between non-tuberculous mycobacteria and TB disease in clinical settings. Furthermore, numerous novel techniques based on the MPT64 release assay are continuously being developed and applied for the identification of both pulmonary and extrapulmonary TB. However, the diagnostic accuracy of the MPT64 antigen assay is influenced by the presence of 63 bp deletion variants within the gene. To our knowledge, this is the first report on the association between the 63 bp deletion variant in and L4.2.2 globally, which highlights the need for the cautious utilization of MPT64-based testing in regions where L4.2.2 isolates are prevalent, such as China and Vietnam, and MPT64 negative results should be confirmed with another assay. In addition, further studies on vaccine development and immunology based on MPT64 should consider these isolates with 63 bp deletion variant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714870PMC
http://dx.doi.org/10.1128/spectrum.01842-23DOI Listing

Publication Analysis

Top Keywords

deletion variant
12
based mpt64
12
mpt64 antigen
8
antigen assay
8
mpt64
5
association lineage
4
lineage 422
4
422 63-bp
4
deletion
4
63-bp deletion
4

Similar Publications

Haplotype-Resolved Genotyping and Association Analysis of 1,020 β-Thalassemia Patients by Targeted Long-Read Sequencing.

Adv Sci (Weinh)

December 2024

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Despite the well-documented mutation spectra of β-thalassemia, the genetic variants and haplotypes of globin gene clusters modulating its clinical heterogeneity remain incompletely illustrated. Here, a targeted long-read sequencing (T-LRS) is demonstrated to capture 20 genes/loci in 1,020 β-thalassemia patients. This panel permits not only identification of thalassemia mutations at 100% of sensitivity and specificity, but also detection of rare structural variants (SVs) and single nucleotide variants (SNVs) in modifier genes/loci.

View Article and Find Full Text PDF

[Genetic analysis of children with nonsyndromic sensorineural hearing loss due to novel mutations/deletions of bialleles].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

December 2024

Medical Genetics Center, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Central Hospital, Lanzhou730050, China Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou730050, China.

To investigate the clinical and genetic characteristics of nonsyndromic sensorineural hearing loss caused by biallelic variation. A child with hearing impairment who was diagnosed at Gansu Provincial Maternal and Child Health Hospital on May 2022 and was selected as the research object. Peripheral blood of the child and her parents was collected, genomic DNA was extracted.

View Article and Find Full Text PDF

Response of ZmPHO1 family members to low phosphorus stress and association of natural variation in ZmPHO1;2a reveal the role of low phosphorus tolerance.

Plant Physiol Biochem

December 2024

Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China. Electronic address:

Phosphorus (Pi) is an essential nutrient for plants to sustain normal life processes. In this study, we found that the ZmPHO1 proteins had similar molecular weights and the same conserved domain. Phylogenetic and cis-acting element analysis showed that ZmPHO1s were divided into 4 subgroups, in which ZmPHO1;2a and ZmPHO1;2b were closely phylogenetic with OsPHO1;2b, and the promoter region of ZmPHO1s contained abundant abiotic stress-related elements.

View Article and Find Full Text PDF

Objectives: Sialidosis type 1 is a rare autosomal recessive lysosomal storage disorder caused by pathogenic variants in the gene, which encodes the sialic acid-degrading enzyme α-neuraminidase. Sialidosis type 1 is a milder form with a late-onset phenotype, characterized by progressive myoclonic epilepsy and ataxia with cherry-red spots. Sialidosis type 2 is an early-onset and more severe form presenting with dysmorphic features, hepatosplenomegaly and cognitive delay.

View Article and Find Full Text PDF

European Genotyping Survey of Dyserythropoietic Anemia and Myopathy Syndrome in English Springer Spaniels.

Vet Sci

November 2024

Department of Small Animal Internal Medicine, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.

Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for muscle function, and the Rab8/10-EHBP1L1-Bin1-dynamin axis participates in nuclear polarization during the enucleation of erythroblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!