A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synaptic Involvement of the Human Amygdala in Parkinson's Disease. | LitMetric

Synaptic Involvement of the Human Amygdala in Parkinson's Disease.

Mol Cell Proteomics

Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.

Published: December 2023

α-Synuclein, a protein mostly present in presynaptic terminals, accumulates neuropathologically in Parkinson's disease in a 6-stage sequence and propagates in the nervous system in a prion-like manner through neurons and glia. In stage 3, the substantia nigra are affected, provoking motor symptoms and the amygdaloid complex, leading to different nonmotor symptoms; from here, synucleinopathy spreads to the temporal cortex and beyond. The expected increase in Parkinson's disease incidence accelerates the need for detection biomarkers; however, the heterogeneity of this disease, including pathological aggregates and pathophysiological pathways, poses a challenge in the search for new therapeutic targets and biomarkers. Proteomic analyses are lacking, and the literature regarding synucleinopathy, neural and glial involvement, and volume of the human amygdaloid complex is controversial. Therefore, the present study combines both proteomic and stereological probes. Data-independent acquisition-parallel accumulation of serial fragmentation proteomic analysis revealed a remarkable proteomic impact, especially at the synaptic level in the human amygdaloid complex in Parkinson's disease. Among the 199 differentially expressed proteins, guanine nucleotide-binding protein G(i) subunit alpha-1 (GNAI1), elongation factor 1-alpha 1 (EEF1A1), myelin proteolipid protein (PLP1), neuroplastin (NPTN), 14-3-3 protein eta (YWHAH), gene associated with retinoic and interferon-induced mortality 19 protein (GRIM19), and orosomucoid-2 (ORM2) stand out as potential biomarkers in Parkinson's disease. Stereological analysis, however, did not reveal alterations regarding synucleinopathy, neural or glial populations, or volume changes. To our knowledge, this is the first proteomic study of the human amygdaloid complex in Parkinson's disease, and it identified possible biomarkers of the disease. Lewy pathology could not be sufficient to cause neurodegeneration or alteration of microglial and astroglial populations in the human amygdaloid complex in Parkinson's disease. Nevertheless, damage at the proteomic level is manifest, showing up significant synaptic involvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700869PMC
http://dx.doi.org/10.1016/j.mcpro.2023.100673DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
28
amygdaloid complex
20
human amygdaloid
16
complex parkinson's
12
disease
9
synaptic involvement
8
synucleinopathy neural
8
neural glial
8
parkinson's
7
proteomic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!