Continuous Nanospace in Nanoporous Liquid Crystal Investigated by Xe NMR Spectroscopy.

Angew Chem Int Ed Engl

Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.

Published: January 2024

Continuous nanopores within fluid materials could be used for novel chemical events such as the accommodation of guest molecules, unique arrays of the entrapped molecules, and chemical reactions in a dynamic molecular assembly. Columnar liquid crystals composed of a one-dimensionally stacked assembly of shape-persistent macrocycles form nanochannels owing to the intrinsic nanospace in the column. However, the existence of substantial nanoporosity has not been confirmed experimentally thus far. In this study, for the first time in the literature, we confirmed the presence of discrete and spatiotemporally continuous voids in a liquid-crystalline material. In Xe NMR spectroscopy of liquid crystalline columnar assembly of imine-bridged shape-persistent macrocycles under Xe atmosphere, the NMR signals of the Xe atoms entrapped in the liquid-crystalline macrocycle depended on the gas pressure and phase-transition temperatures. These results indicate that the encapsulation of Xe gas molecules within the discrete and oriented nanospaces of nanoporous liquid crystals is different from the homogeneous dissolution of the solute in an ordinary solution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202316523DOI Listing

Publication Analysis

Top Keywords

nanoporous liquid
8
nmr spectroscopy
8
liquid crystals
8
shape-persistent macrocycles
8
continuous nanospace
4
nanospace nanoporous
4
liquid
4
liquid crystal
4
crystal investigated
4
investigated nmr
4

Similar Publications

Ice-Confined Synthesis of Stacked Polymer Nanospheres as Osmotic Power Generation Membranes.

Nano Lett

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting.

View Article and Find Full Text PDF

Interfacial Constructing Poly(ionic liquids) on Nanoporous Block Copolymers for Antifouling Ultrafiltration.

Langmuir

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China.

The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization.

View Article and Find Full Text PDF

Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.

View Article and Find Full Text PDF

A label-free electrochemical biosensor based on graphene quantum dots-nanoporous gold nanocomposite for highly sensitive detection of glioma cell.

Anal Chim Acta

February 2025

School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:

Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.

View Article and Find Full Text PDF

The Effects of Morphology and Hydration on Anion Transport in Self-Assembled Nanoporous Membranes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!