Gelatinous zooplankton are increasingly recognized to play a key role in the ocean's biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55-60 m and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian. We found a profound influence of O. dioica on vertical carbon fluxes, particularly during a short but intense bloom period in the high CO treatment, during which carbon export was 42%-64% higher than under ambient conditions. This elevated flux was mostly driven by an almost twofold increase in O. dioica biomass under high CO . This rapid population increase was linked to enhanced fecundity (+20%) that likely resulted from physiological benefits of low pH conditions. The resulting competitive advantage of O. dioica resulted in enhanced grazing on phytoplankton and transfer of this consumed biomass into sinking particles. Using a simple carbon flux model for O. dioica, we estimate that high CO doubled the carbon flux of discarded mucous houses and fecal pellets, accounting for up to 39% of total carbon export from the ecosystem during the bloom. Considering the wide geographic distribution of O. dioica, our findings suggest that appendicularians may become an increasingly important vector of carbon export with ongoing OA.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17020DOI Listing

Publication Analysis

Top Keywords

carbon export
24
carbon
10
oikopleura dioica
8
carbon flux
8
dioica
7
export
6
appendicularian oikopleura
4
dioica enhance
4
enhance carbon
4
high
4

Similar Publications

Environmental degradation due to the rapid increase in CO₂ emissions is a pressing global challenge, necessitating innovative solutions for accurate prediction and policy development. Machine learning (ML) techniques offer a robust approach to modeling complex relationships between various factors influencing emissions. Furthermore, ML models can learn and interpret the significance of each factor's contribution to the rise of CO.

View Article and Find Full Text PDF

Evaluating export vulnerability through import demand elasticity in carbon border adjustment contexts: a focus on Türkiye.

Environ Sci Pollut Res Int

January 2025

Department of International Trade and Business, Faculty of Economics and Administrative Sciences, Inonu University, 44000, Malatya, Turkey.

Import demand elasticity (IDE) is a critical metric often employed to guide government decisions regarding tariffs and non-tariff barriers, ensuring that foreign trade remains uninterrupted while optimizing tax revenues. This study, however, leverages IDE to assess the impact of the carbon border adjustment mechanism (CBAM) on Türkiye's decarbonization process. Specifically, the research analyzed the total export quantities and unit prices of four product groups-cement, fertilizers, and inorganic chemicals, steel and iron, and aluminum-exported from Türkiye to the European Union-27 countries under the CBAM framework between 2002 and 2021.

View Article and Find Full Text PDF

Carbon Dynamics Under Drought and Recovery in Grapevine's Leaves.

Plant Cell Environ

January 2025

Soil, Water, and Environmental Sciences, Volcani - Agricultural Research Organization, Ramat Yishai, Israel.

Drought stress reduces leaf net assimilation (A) and phloem export, but the equilibrium between the two is unknown. Consequently, the leaf carbon balance and the primary use of the leaf nonstructural carbohydrates (NSC) under water deficit are unclear. Also, we do not know how quickly leaves can replenish their NSC storage and resume export after rehydration.

View Article and Find Full Text PDF

Recent years have seen unprecedented shifts in global natural gas trade, precipitated in large part by Russia's war on Ukraine. How this regional conflict impacts the future of natural gas markets is subject to three interconnected factors: (i) Russia's strategy to regain markets for its gas exports; (ii) Europe's push towards increased liquified natural gas (LNG) and the pace of its low carbon transition; and (iii) China's gas demand and how it balances its climate and energy security objectives. A scenario modelling approach is applied to explore the potential implications of this geopolitical crisis.

View Article and Find Full Text PDF

Ocean acidification and global warming may favor blue carbon service in a Cymodocea nodosa community by modifying carbon metabolism and dissolved organic carbon fluxes.

Mar Pollut Bull

January 2025

Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.

Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!