Two-dimensional (2D) material-based nanoelectromechanical (NEM) resonators are expected to be enabling components in hybrid qubits that couple mechanical and electromagnetic degrees of freedom. However, challenges in their sensitivity and coherence time have to be overcome to realize such mechanohybrid quantum systems. We here demonstrate the potential of strain engineering to realize 2D material-based resonators with unprecedented performance. A liquid-based tension process was shown to enhance the resonance frequency and quality factor of graphene resonators six-fold. Spectroscopic and microscopic characterization reveals a surface-energy enhanced wall interaction as the origin of this effect. The response of our tensioned resonators is not limited by external loss factors and exhibits near-ideal internal losses, yielding superior resonance frequencies and quality factors to all previously reported 2D material devices. Our approach represents a powerful method of enhancing 2D NEM resonators for future quantum systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nh00420aDOI Listing

Publication Analysis

Top Keywords

graphene resonators
8
nem resonators
8
quantum systems
8
resonators
6
ultrahigh-quality graphene
4
resonators liquid-based
4
liquid-based strain-engineering
4
strain-engineering two-dimensional
4
two-dimensional material-based
4
material-based nanoelectromechanical
4

Similar Publications

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction.

Biosensors (Basel)

December 2024

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Surface plasmon resonance (SPR) biosensors have experienced rapid development in recent years and have been widely applied in various fields. Angular-interrogation SPR biosensors play an important role in the field of biological detection due to their advantages of reliable results and high stability. However, angular-interrogation SPR biosensors also suffer from low detection sensitivity, poor real-time performance, and limited dynamic detection range, which seriously restricts their application and promotion.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Optical sensors based on plasmonic nano-structures: A review.

Heliyon

December 2024

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Optical sensors are among the most significant optical devices that have found extensive applications for THz sensing. Surface plasmon-based sensors have attracted increasing attention more than other kinds of optical sensors such as photonic crystal, optical fiber, and graphene sensors, owing to their compact footprint, fast reaction, and high sensitivity value. Therefore, this work reviews plasmonic sensor structures divided into three general categories.

View Article and Find Full Text PDF

Insight into Robust Anion Coordination Behavior of Organic Cathode with Dual Elongated π-Conjugated Motifs.

Angew Chem Int Ed Engl

December 2024

Shenzhen institute of advanced technology Chinese Academy of Sciences, Functional Thin Films Research Centre, 1068 Xueyuan Avenue, Shenzhen University Town, 518000, SHENZHEN, CHINA.

Organics electrode materials offer multi-electron reactivity, flexible structures, and redox reversibility, but encounter poor conductivity and durability in electrolytes. To overcome above barriers, we propose a dual elongation strategy of π-conjugated motifs with active sites, involving extended carbazole and electropolymerized crosslinked polymer, which enhances electronic conductivity by the electronic delocalization of electron-withdrawing conjugated groups, boosts theoretical capacity by increasing redox-active site density, and endows robust electrochemical stability attributed to crosslinked organic structures. As a proof-of-concept, 5,11-dihydridoindolo[3,2-b]carbazole (DHIC) is selected as the model cathode material for a dual-ion battery, with elongated carbazole groups functioning both as redox-active centers and polymerization anchors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!