Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Large reserves, high capacity, and low cost are the core competitiveness of disordered carbon materials as excellent anode materials for sodium-ion batteries (SIBs). And the existence and improper treatment of a large number of organic solid wastes will aggravate the burden on the environment, therefore, it is significant to transform wastes into carbon-based materials for sustainable energy utilization. Herein, a kind of hard carbon materials are reported with waste biomass-foam as the precursor, which can improve the sodium storage performance through pre-oxidation strategy. The introduction of oxygen-containing groups can promote structural cross-linking, and inhibit the melting and rearrangement of carbon structure during high-temperature carbonization that produces a disordered structure with a suitable degree of graphitization. Moreover, the micropore structure are also regulated during the high-temperature carbonization process, which is conducive to the storage of sodium ions in the low-voltage plateau region. The optimized sample as an electrode material exhibits excellent reversible specific capacity (308.0 mAh g) and initial Coulombic efficiency (ICE, 90.1%). In addition, a full cell with the waste foam-derived hard carbon anode and a NaV(PO) cathode is constructed with high ICE and energy density. This work provides an effective strategy to conversion the waste to high-value hard carbon anode for sodium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202307132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!