It is crucial to rationally design and synthesize atomic-scale transition metal-doped carbon catalysts with high electrocatalytic activity to achieve a high-efficient oxygen reduction reaction (ORR). Herein, an electrocatalyst comprised of Fe-Fe dual atom pairs and N-doped concave carbon are reported (N-CC@Fe DA) that achieves ultrahigh electrocatalytic ORR activity. The catalyst is prepared by a gaseous doping approach, with zeolitic imidazolate framework-8 (ZIF-8) as the carbon framework precursor and cyclopentadienyliron dicarbonyl dimer as the Fe-Fe atom pair precursor. The catalyst exhibits high cathodic ORR catalytic performance in an alkaline Zn/air battery and proton exchange membrane fuel cell (PEMFC), yielding peak power densities of 241 mW cm and 724 mW cm, respectively, compared to 127 mW cm and 1.20 W cm with conventional Pt/C catalysts as cathodes. The presence of Fe atom pairs coordinate with N atoms is revealed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis, and Density Functional Theory (DFT) calculation results show that the Fe-Fe pair structure is beneficial for adsorbing oxygen molecules, activating the O─O bond, and desorbing OH intermediates formed during oxygen reduction, resulting in a more efficient oxygen reaction. The findings may provide a new pathway for preparing ultra-high-performance doped carbon catalysts with Fe-Fe atom pair structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202307011 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Photoelectronic Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 260101, China.
Engineering the local coordination environment of single metal atoms is an effective strategy to improve their catalytic activity, selectivity, and stability. In this study, we develop an asymmetric Pd-Ag diatomic site on the surface of g-CN for the selective electrocatalytic semihydrogenation of alkynes. The single Pd atom catalyst, which has a locally symmetric Pd coordination, was inactive for the semihydrogenation of phenylacetylene in a 1 M KOH and 1,4-dioxane solution at an applied potential of -1.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
Metal halide borates are promising candidates for high-performance nonlinear optical (NLO) applications, yet the origins of their second harmonic generation (SHG) properties remain unclear. Using atom response theory combined with density functional theory calculations, this study investigates why halogen substitution leads to distinctly different SHG responses in halide monoborates (PbBOX) versus halide pentaborates (PbBOX). We find that the SHG origins vary between these two families due to differences in the strength of the Pb-X interactions.
View Article and Find Full Text PDFSmall
January 2025
National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMnO is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn-Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMnO for decades.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Shandong University, Binhai Road 72, Jimo, Qingdao, Shandong, 266237, CHINA.
Magnetic Weyl semimetals (WSM) have recently attracted much attention due to their potential in realizing strong anomalous Hall effects. Yet, how to design such systems remains unclear. Based on first-principles calculations, we show here that the ferromagnetic half-metallic compound InCoSehas several pairs of Weyl points and is hence a good candidate for magnetic WSM.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany.
Two octa-coordinated lanthanum (III) complexes of deprotonated azaphosphor β-diketon and diimine ligands, [LnLQ] (L = [ClCHC(O)NP(O)(NCH)], Q = Phen (C1) and Bipy (C2)), were synthesized and characterized by elemental analysis, IR, and NMR spectra. X-ray crystallography revealed a distorted tetragonal antiprism LaO6N2 coordination geometry around the lanthanum atom in both compounds. Nano-sized complexes (Ć1 and Ć2) were synthesized via a sonochemical process and analyzed using SEM and XRPD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!