Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11-26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17027DOI Listing

Publication Analysis

Top Keywords

grazing exclusion
28
soil aggregates
16
soil
10
exclusion
8
microbial communities
8
grazing
7
aggregates
5
perspectives microbiome
4
microbiome nutrient
4
sequestration
4

Similar Publications

Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.

View Article and Find Full Text PDF

Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.

View Article and Find Full Text PDF

Synergy and trade-off between plant functional traits enhance grassland multifunctionality under grazing exclusion in a semi-arid region.

J Environ Manage

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.

Grazing exclusion is effective in restoring vegetation and ecological services in degraded grasslands within semi-arid regions. Variations in plant functional traits associated with the duration of grazing exclusion can indicate both ecological adaptability of plants and restoration processes of ecosystems. However, research on ecosystem multifunctionality (EMF) under grazing exclusion and restoration mechanisms mediated by plant functional traits is relatively limited.

View Article and Find Full Text PDF

Multiscale partitioning effects of livestock grazing management on plant community composition and diversity in arid rangelands.

J Environ Manage

January 2025

Department of Nature and Life Sciences, Faculty of Exact Sciences and Nature and Life Sciences, University of Tebessa, 12002, Tebessa, Algeria; Laboratory "Water and Environment", University of Tebessa, 12002 Tebessa, Algeria.

Arid steppe rangelands in North Africa are highly significant ecosystems that are exceedingly sensitive to global warming and are also influenced by severe grazing and heavy utilization practices. Consequently, it is imperative to conduct extensive investigations regarding the impact of overgrazing due to increased sheep populations on plant diversity in these regions. The objective of this study is to examine the effect of two grazing managements (grazing-excluded vs.

View Article and Find Full Text PDF

The objective was to investigate the effect of rainfall on sodium (Na) dissolution and total losses by runoff of loose mineral mixtures (MM) available in uncovered feeders to grazing cattle, as well as the possible impacts on their growth performance and fulfilment of Na nutritional needs. Experiments ( = 7) were conducted to quantify the amount of Na lost due to rainfall and to evaluate the effects of different Na levels in the MM (35, 70, 105, and 140 g Na/kg) on MM assumed intake and growth performance. Cattle grazed Brachiaria sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!