Background: Despite a growing number of publications highlighting the potential impact on the therapy outcome, rare genetic variants (minor allele frequency < 1%) in genes associated to drug adsorption, distribution, metabolism, and elimination are poorly studied. Previously, rare germline DPYD missense variants were shown to identify a subset of fluoropyrimidine-treated patients at high risk for severe toxicity. Here, we investigate the impact of rare genetic variants in a panel of 54 other fluoropyrimidine-related genes on the risk of severe toxicity.

Methods: The coding sequence and untranslated regions of 54 genes related to fluoropyrimidine pharmacokinetics/pharmacodynamics were analyzed by next-generation sequencing in 120 patients developing grade 3-5 toxicity (NCI-CTC vs3.0) and 104 matched controls. Sequence Kernel Association Test (SKAT) analysis was used to select genes with a burden of genetic variants significantly associated with risk of severe toxicity. The statistical association of common and rare genetic variants in selected genes was further investigated. The functional impact of genetic variants was assessed using two different in silico prediction tools (Predict2SNP; ADME Prediction Framework).

Results: SKAT analysis highlighted DPYS and PPARD as genes with a genetic mutational burden significantly associated with risk of severe fluoropyrimidine-related toxicity (Bonferroni adjusted P = 0.024 and P = 0.039, respectively). Looking more closely at allele frequency, the burden of rare DPYS variants was significantly higher in patients with toxicity compared with controls (P = 0.047, Mann-Whitney test). Carrying at least one rare DPYS variant was associated with an approximately fourfold higher risk of severe cumulative (OR = 4.08, P = 0.030) and acute (OR = 4.21, P = 0.082) toxicity. The burden of PPARD rare genetic variants was not significantly related to toxicity. Some common variants with predictive value in DPYS and PPARD were also identified: DPYS rs143004875-T and PPARD rs2016520-T variants predicted an increased risk of severe cumulative (P = 0.002 and P = 0.001, respectively) and acute (P = 0.005 and P = 0.0001, respectively) toxicity.

Conclusion: This work demonstrated that the rare mutational burden of DPYS, a gene strictly cooperating with DPYD in the catabolic pathway of fluoropyrimidines, is a promising pharmacogenetic marker for precision dosing of fluoropyrimidines. Additionally, some common genetic polymorphisms in DPYS and PPARD were identified as promising predictive markers that warrant further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10633914PMC
http://dx.doi.org/10.1186/s40246-023-00546-9DOI Listing

Publication Analysis

Top Keywords

burden rare
4
rare variants
4
variants dpys
4
dpys gene
4
gene novel
4
novel predictor
4
predictor risk
4
risk developing
4
developing severe
4
severe fluoropyrimidine-related
4

Similar Publications

Molecular Stratification of Light-Chain Cardiac Amyloidosis With F-Florbetapir and Ga-FAPI-04 for Enhanced Prognostic Precision.

JACC Cardiovasc Imaging

January 2025

Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Cardiac involvement in amyloid light chain (AL) amyloidosis significantly influences prognosis, necessitating timely diagnosis and meticulous risk stratification.

Objectives: This prospective study aimed to delineate the molecular phenotypes of AL cardiac amyloidosis (AL-CA) by characterizing fibro-amyloid deposition using F-florbetapir and gallium-68-labeled fibroblast activation protein inhibitor-04 (Ga-FAPI-04) positron emission tomography (PET)/computed tomography (CT) imaging. The authors also proposed a novel molecular stratification methodology for prognosis.

View Article and Find Full Text PDF

Effects of adjuvant hyperbaric oxygen therapy and real-time fluorescent imaging on deep sternal wound infection: a retrospective study.

J Wound Care

January 2025

Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.

Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.

View Article and Find Full Text PDF

Fungal periprosthetic joint infections (PJIs) are rare but increasingly recognized complications following total joint arthroplasty (TJA). While remains the most common pathogen, non-albicans species and other fungi, such as , have gained prominence. These infections often present with subtle clinical features and affect patients with significant comorbidities or immunosuppression.

View Article and Find Full Text PDF

Fucosidosis: A Review of a Rare Disease.

Int J Mol Sci

January 2025

Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.

Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.

View Article and Find Full Text PDF

Rare-Earth Pretreatment Improves Performance of Reactive Dye Argazol Navy Blue on Banana-Fiber Fabric.

Molecules

January 2025

Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, Qiqihar 161006, China.

At present, the use of conventional reactive dyes on banana-fiber fabric leads to the problem of excessive salt consumption, which is not conducive to environmental protection. In this experimental study, rare-earth-pretreated banana-fiber fabric was dyed with the reactive dye Argazol Navy Blue. The rare-earth pretreatment was carried out to reduce the level of salt consumption, improve dyeing and fixation rates, and reduce the treatment burden of printing and dyeing wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!